Калькулятор расчета секций радиаторов отопления по объему

Для того чтобы в жилом помещении было по-настоящему тепло, мало купить мощный газовый или электрический котел и многосекционные батареи, ведь на конечный результат влияют не только эти показатели. Облегчить поставленную задачу поможет специально разработанный специалистами калькулятор расчета секций радиаторов отопления, в котором автоматически учитываются все необходимые данные.

Микроклимат в квартире зависит не только от внутренних, но и от многих внешних факторов, ведь даже в самом близкорасположенном от централизованной или автономной котельной доме может быть недостаточно тепло, если он стоит на розе ветров или его окна выходят на северную сторону. Кроме того, на оптимальное количество секций в радиаторах отопления влияет и схема их врезки в общую магистраль.

Провести калькуляцию для вычисления необходимого количества радиаторов и суммарной мощности по каждому отопительному прибору можно самостоятельно, ведь для этого не нужны какие-то особые знания и навыки работы в коммуникационном строительстве. Для этого достаточно просто вбить определенные данные в онлайн-калькулятор, который можно найти в свободном доступе на многих сетевых ресурсах, посвященных обустройству домовой и придомовой инфраструктуры.

Автоматический расчет отопления по объему помещения и другим параметрам производится на основе подробного анализа семнадцати основных позиций, которые оказывают прямое воздействие на микроклимат в жилом помещении. В этот перечень входят следующие показатели:

  1. 1. Общая площадь квартиры или отдельной ее комнаты, если установка или замена отопительных приборов и примыкающим к ним элементам разводки будет осуществляться только в этой зоне.
  2. 2. Высота потолков в квартире, которая условно делится на 5 основных категорий: низкую — до 2,7 м, ниже средней — от 2,8 до 3 м, среднюю — от 3,1 до 3,5 м, выше средней — от 3,6 до 4 м, большую — свыше 4,1 м.
  3. 3. Общее количество наружных стен, под которым подразумевается, является ли комната угловой или нет.
  4. 4. Направление, в сторону которого смотрят окна. Всего специалисты выделяют две категории вместо четырех привычных: первая — северная, северо-восточная и восточная сторона, вторая — южная, юго-западная и западная.
  5. 5. Расположение дома по отношению к зимней розе ветров, что особенно важно для высотных зданий, построенных в местности с более низкими сооружениями. В этой категории принято выделять три основных параметра: наветренную, подветренную и расположенную параллельно направлению ветра сторону.
  6. 6. Максимально низкие температуры внешней среды в зимнее время года, характерные для конкретного региона проживания. Всего выделяется 7 температурных групп: не более -10 градусов, от -10 до -14, от -15 до -19 градусов, от -20 до -24, от -25 до -29, от -30 до -34, а также -35 и ниже.
  7. 7. Утепление наружных стен. Как правило, в новых домах оно полноценное, в то время как в типовых панельных многоэтажках этот уровень является критичным, поэтому его относят к категории «Утепление отсутствует». Если же хозяева проводили процедуру утепления собственными силами, привлекая специализированные строительные бригады альпинистов, или на повестке дня стоит вопрос о расчете количества батарей отопления в частном доме, то тогда в калькуляторе рекомендуется выбирать среднюю или полноценную степень качества наружной обшивки.
  8. 8. Характеристики объекта, расположенного под квартирой. В этом случае выделяется три категории: грунтовый пол или неотапливаемый объект, утепленный пол по грунту или над нежилым помещением без отопления и помещение с полноценным отоплением.
  9. 9. Данные о верхнем объекте: неотапливаемый чердак или нежилое помещение без утепления и обогрева, чердак с утеплением или любое другое помещение (чердачная котельная, фитнес-зал, бассейн и пр.), жилое отапливаемое помещение.
  10. 10. Варианты остекления окон и характеристики их рам. В настоящее время ведется учет по четырем основным группам: старые оконные рамы с обычным (двойным) остеклением, двойной стеклопакет с трехкамерным профилем, тройной стеклопакет с трех- или пятикамерным профилем, полное отсутствие остекления.
  11. 11. Общее количество окон в помещении, где будет устанавливаться радиатор отопления, или их полное отсутствие, что также бывает.
  12. 12. Высота оконного блока (вводится вручную в метрах).
  13. 13. Ширина блока.
  14. 14. Двери, ведущие на балкон или на улицу, и их количество.
  15. 15. Оптимальная схема установки радиаторов отопления. На выбор предлагается 6 базовых вариантов: диагональный (верхняя подача / нижняя обратка), односторонний (верх / низ), нижний последовательный, диагональный (нижняя подача / верхняя обратка), односторонний с другим вариантом подачи (низ / верх), седельный, который считается самым неэффективным и применяется в том случае, если особенности планировки не предполагают другого типа врезки в основную магистраль.
  16. 16. Расположение отопительного прибора: открытое, с верхним размещением подоконника, столешницы, полок и других элементов, с верхним расположением стеновой ниши, с перекрывающим декоративным экраном, с полной «зашивкой» батареи в декоративный кожух ли нишу.
  17. 17. Тип устанавливаемых радиаторов: цельная (неразборная) конструкция — ведется общий расчет теплоотдачи радиатора батарей отопления, необходимой для поддержания оптимальной температуры в помещении зимой, и разборная система — применение таких батарей предполагает проведение расчета необходимого количества секций для полноценного отопления комнаты.

Рассчитать количество радиаторов отопления на калькуляторе — дело простое, но, чтобы перестраховаться, необходимо проводить и ручные вычисления, учитывая все характеристики и особенности помещения.

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная , правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Читайте также:  Как установить котел отопления в квартире многоквартирного дома

Несмотря на современное разнообразие систем отопления различных типов, лидером по по пулярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто , батареи стоят под окнами и обеспечиваю т т ребуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты , основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее , можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Расчет батарей отопления на площадь

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов .

Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Стальные радиаторы отопления имеют немало недостатков

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь . Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать , исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно .

Знакомый всем с детских лет чугунный радиатор МС-140-500

Возможно, такие батареи МС -140 — 500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

Современные чугунные батареи отопления

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу. Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя ( емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Читайте также:  Отопление в своем доме батареи некоторые холодные

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Строение биметаллического радиатора отопления

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные ;
  • Чг – чугунные ;
  • Ал – алюминиевые обычные ;
  • АА – алюминиевые анодированные ;
  • БМ – биметаллические.

Возможно, вас заинтересует информация о том, что собой представляет батарея биметаллическая

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный ме тр пл ощади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q – требуемая теплоотдача от радиаторов отопления.

S – площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет :

N = Q/ Qус

N – рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2, 7 м ) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи , исходя из объема помещения. Для этого применяется усредненный показатель – 41 В т т епловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h× 40 ( 34 )

где h – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

А теперь перейдем к более серьезным расчетам . Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем , подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D× Е × F× G× H× I× J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по по рядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А :

  • Одна внешняя стена – А = 1, 0
  • Две внешних стены – А = 1, 2
  • Три внешний стены – А = 1, 3
  • Все четыре стены внешние – А = 1, 4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Прогреваемость помещений во многом зависит от их расположения относительно сторон света

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В :

  • Комната выходит на север или восток – В = 1, 1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1, 0
  • Внешние стены не утеплены – С = 1, 27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.
Читайте также:  Тэны для алюминиевых радиаторов отопления в уфе

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку » — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 ° С и ниже – D= 1, 5
  • — 25 ÷ — 35 ° С – D= 1, 3
  • до – 20 ° С – D= 1, 1
  • не ниже – 15 ° С – D= 0, 9
  • не ниже – 10 ° С – D= 0, 7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е :

  • До 2, 7 м – Е = 1, 0
  • 2,8 – 3, 0 м – Е = 1, 05
  • 3,1 – 3, 5 м – Е = 1, 1
  • 3,6 – 4, 0 м – Е = 1, 15
  • Более 4, 1 м – Е = 1, 2

F – коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещение – F= 1, 0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0, 9
  • отапливаемое помещение – F= 0, 8

G – коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G :

  • обычные деревянные рамы с двойным остеклением – G= 1, 27
  • окна оснащены однокамерным стеклопакетом (2 стекла) – G= 1, 0
  • однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0, 85

Н – коэффицие нт пл ощади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения . В зависимости от полученного результата находим коэффициент Н :

  • Отношение менее 0,1 – Н = 0, 8
  • 0,11 ÷ 0,2 – Н = 0, 9
  • 0,21 ÷ 0,3 – Н = 1, 0
  • 0,31÷ 0,4 – Н = 1, 1
  • 0,41 ÷ 0,5 – Н = 1, 2

I – коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки , зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

Схемы врезки радиаторов в контур отопления

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1, 0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1, 03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1, 13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1, 25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1, 28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1, 28

J – коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J :

На теплоотдачу батарей влияет место и способ их установки в помещении

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0, 9

б – радиатор прикрыт сверху подоконником или полкой – J= 1, 0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1, 07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — части чно прикрыт декоративным кожухом – J= 1, 12

д – радиатор полностью прикрыт декоративным кожухом – J= 1, 2

⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰⃰ ⃰ ⃰⃰⃰⃰⃰⃰⃰⃰ ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка , многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета .

Возможно, вас заинтересует информация о том, как выбрать электрокотел

Евгений Афанасьев главный редактор

Автор публикации 11.09.2015

Понравилась статья?
Сохраните, чтобы не потерять!