Бетон структура бетона классы и марки бетона

Виды бетона и предъявляемые к нему требования

ОСНОВНЫЕ ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА БЕТОНА

1. Виды бетона и предъявляемые к нему требования.

2. Структура (строение) бетона.

3. Усадка бетона и начальные напряжения

7. Модуль деформаций бетона

Бетон искусственный камневидный материал получаемый в результате твердения смеси, состоящей из вяжущего, воды и заполнителей.

Бетон как материал для железобетонных конструкций должен об­ладать определёнными, наперёд заданными физико-механическими свойствами: прочностными, деформативными и физическими свойствами.

хорошим сцеплением с ар­матурой, достаточной плотностью (непроницаемостью) для защиты арматуры от коррозии и др. Деформативность бетона не должна быть слишком большой.

Под прочностными свойствами бетона понимают нормативные и расчетные характеристики при сжатии и растяжении, сцепление бетона с арматурой.

Под деформативными свойствами понимают сжимаемость и растяжимость бетона под нагрузкой, ползучесть и усадку, набухание и температурные деформации.

К физическим свойствам относят водонепроницаемость, морозо- и жаростойкость, коррозионную стойкость, огнестойкость, тепло- и звукопроводность и т.п.

Для изготовления бетонных и железо­бетонных конструкций предусмотрены следующие виды бетонов:

— тяжёлый средней плотности свыше 2200 до 2500 кг/м 3 (на плот­ных заполнителях);

— мелкозернистый средней плотности свыше 1800 кг/м 3 (на мелких заполнителях);

— лёгкий плотной и поризованной структуры (на пористых запол­нителях);

— ячеистый автоклавного и неавтоклавного твердения и др.

В качестве плотных заполнителей применяют щебень из дроблё­ных горных пород (песчаника, гранита, диабаза и др.) и кварцевый песок. Пористые заполнители могут быть естественными (перлит, пемза, ракушечник) или искусственными (керамзит, шлак и т. п.). В зависимости от вида пористых заполнителей различают керамзитобетон, шлакобетон, перлитобетон и т. д.

В настоящее время в строительстве применяется много различных видов бетонов. Но для выполнения несущих конструкций зданий и сооружений наиболее широко используется тяжёлый бетон на це­ментном вяжущем и крупном плотном заполнителе из песчаника, гранита, диабаза и т. п. материалов со средней плотностью в преде­лах 2200 3 . Его свойства и рассматриваются ниже.

Структура бетона оказывает большое влияние на его прочность и деформативность. Чтобы уяснить это, вспомним схему физико-химического процесса получения бетона.

Для приготовления бетона берут в определённых пропорциях заполнители (песок, щебень или гравий), вяжущее (цемент) и воду. Кро­ме того, для придания бетону различных свойств (например, моро­зостойкости) дополнительно в небольших количествах могут вво­диться различные добавки. Смесь заполнителей и вяжущего заливают водой. После затворения этой смеси начинается химическое взаимо­действие между частицами цемента и водой (гидратация) в резуль­тате чего образуется цементное тесто. При перемешивании такой смеси цементное тесто обволакивает зёрна заполнителей и, постепен­но затвердевая, превращает всю массу в монолитное твёрдое тело, способное нести нагрузку.

Следовательно, бетон представляет собой неоднородный искус­ственный каменный материал. Следует обратить внимание на то, что даже сам затвердевший цементный раствор (цементный камень) имеет также неоднородную структуру и состоит из упругого кри­сталлического сростка, растущего с течением времени, и наполня­ющей его вязкой студенистой массы (геля), количество которой по­степенно уменьшается.

Таким образом, структуру бетона можно представить в виде про­странственной решетки из цементного камня (включающего кри­сталлический сросток, гель и большое количество пор и капилля­ров, содержащих воздух, водяной пар и воду), в котором хаотично расположены зёрна песка и щебня (рис. 2.1).

Рисунок 2.1 – Структура бетона: 1 — цементный камень; 2 — щебень; 3 — песок; 4 — поры, заполненные воздухом и водой

Процесс твердения бетона при благоприятных температурно-влажностных условиях может длиться годами и носит затухающий характер. Этот процесс является экзотермическим, т. е. он идёт с выделением большого количества тепла.

Существенно важным фактором, влияющим на структуру и прочность бетона, является водоцементное отношение W/С — отно­шение веса воды к весу цемента в единице объёма бетонной смеси. Для успешного протекания реакции схватывания цемента и тверде­ния цементного камня необходимо, чтобы W/C ≥ 0,2. Однако для достижения хорошей удобоукладываемости бетонной смеси прихо­дится принимать W/C = 0,35. 0,7, т. е. вводить воду с избытком. Излишек воды в дальнейшем постепенно испаряется, и в цементном камне образуются многочисленные каналы (называемыми ещё пора­ми или капиллярами), заполненные химически несвязанной водой, водяным паром и воздухом, которые оказывают давление на стенки. Это снижает прочность бетона и увеличивает его деформативность.

Общий объём пор в затвердевшем цементном камне достаточно велик и составляет при обычных условиях твердения бетона пример­но 25. 40% от его видимого объёма. Причём, размеры поперечного сечения пор весьма малы: 60. 80% от общего количества всех пор имеют размеры поперечного сечения, не превышающие 0,001 мм. С уменьшением W/C пористость цементного камня уменьшается, а прочность бетона повышается. Кроме того, бетоны из жёстких смесей (W/C = 0,3. 0,4) при прочих равных условиях обладают меньшей деформативностью, требуют меньшего расхода цемента.

Процессы постепенного уменьшения объёма геля, кристаллооб­разования, испарения избыточной воды, происходящие в бетоне в те­чение длительного времени, обусловливают ряд его специфических свойств: изменение его прочности во времени, усадку, ползучесть.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

В зависимости от назначения железобетонных конструкций и условий эксплуатации устанавливают показатели качества бетона, основными из которых являются:

класс по прочности на осевое сжатие В; указывают в проектах во всех случаях, как основную характеристику;

для тяжелых бетонов Нормы устанавливают такой ряд классов — В7.5, В10, В12.5, В15, В20, В25, В30, В35, В40, В45, В50, В55, В60.

для мелкозернистых в зависимости от группы в диапазоне от В7.5 до В60.

для легких бетонов в зависимости от средней плотности В3.5 — В40.

класс по прочности на осевое растяжение Вt, назначается в тех случаях, когда эта характеристика имеет главенствующее значение и контролируется на производстве;Вt0.8; Вt1.2; Вt1.6; Вt2; Вt2.4; Вt2.8; Вt3.2;

Читайте также:  Бетон для плитки пропорции с пластификатором

марка по морозостойкости F; назначают для конструкций, подвергающихся в увлажненном состоянии действию попеременных замораживаний и оттаиваний; Характеризует число выдерживаемых бетоном циклов попеременного замораживания — оттаивания в насыщенном водой состоянии при условии, что снижение прочности составляет не более, чем 15%. Для тяжелого и мелкозернистого бетона — F50, F75, F100, F150, F200, F300, F400, F500. Для легкого бетона — F25 — F500. Для ячеистых — F15 — F100.

марка по водонепроницаемости W; назначают для конструкций, к которым предъявляются требования ограниченной проницаемости (резервуары и т.п.); W2, W4, W6, W8, W10, W12. Она характеризует предельное давление воды (кг/см 2 ), при котором не происходит ее просачивание через испытуемый образец в пределах требований Норм.

марка по средней плотности D; назначают для конструкций, к которым кроме требований прочности предъявляются требования теплоизоляции, и контролируют на производстве. Тяжелый бетон от D2200 до D2500; легкий бетон от D800 до D2000; поризованный бетон от D800 до D1400.

Заданные класс и марку бетона получают соответствующим подбором состава бетонной смеси с последующим испытанием контрольных образцов.

Классом бетона по прочности на осевое сжатие В(МПа) называется временное сопротивление сжатию бетонных кубов с размером ребра 150 мм, испытанных в соответствии со стандартом в возрасте 28 суток при хранении в стандартных условиях (при температуре 202С и влажности не менее 60% ) и принятое с обеспеченностью 0.95.

Как было показано в лекции № 1, арматуру в железобетонных конструкциях устанавливают преимущественно для восприятия растягивающих усилий. Необходимое количество арматуры определяют расчетом элементов конструкций на нагрузки и воздействия.

Арматура, устанавливаемая по расчету, называется рабочей;устанавливаемая по конструктивным и технологическим соображениям —монтажной. Монтажная арматура обеспечивает проектное положение рабочей арматуры в конструкции и более равномерного распределения усилий между отдельными стержнями рабочей арматуры. Кроме того, монтажная арматура может воспринимать обычно не учитываемые расчетом усилия от усадки бетона, температурных перепадов и т.д.

Рабочую и монтажную арматуру объединяют в арматурные изделия— сварные и вязаные сетки и каркасы, которые размещают в железобетонных конструкциях в соответствии с характером их работы под нагрузкой.

Арматура классифицирована по 4 признакам:

в зависимости от технологии изготовления — стержневая и проволочная. Под стержневой подразумевают арматуру любого диаметра в пределах 6 40мм, причем независимо от того, как она поставляется промышленностью — в прутках (D>12мм, длина до 13м) или в мотках (массой до 1300кг).

в зависимости от способа последующего упрочнения — горячекатанная арматура может быть термически упрочненной, или упрочненной в холодном состоянии — вытяжкой, волочением.

По форме поверхности — бывает периодического профиля или гладкой. Выступы в виде ребер на поверхности стержневой арматуры периодического профиля, рифы или вмятины на поверхности проволочной арматуры значительно улучшают сцепление с бетоном.

по способу применения — напрягаемая и ненапрягаемая арматура.

источник

В зависимости от назначения железобетонных конструкций и условий их эксплуатации нормы проектирования СП 52-101-2003 устанавливают показатели качества бетона (их несколько). Важнейшим из них является класс бетона по прочности на осевое сжатие В. Он указывается в проектах во всех случаях как основная характеристика бетона.

Классом бетона по прочности на осевое сжатие В называется наименьшее контролируемое значение временного сопротивления сжатию бетонных кубов с размером ребра 150 мм, испытанных после 28 суток твердения при температуре t = 20 ± 2°С и относительном влажности воздуха более 60% с соблюдением всех требований стандарта, которое принимается с доверительной вероятностью 0,95.

Для бетонных и железобетонных конструкций нормами проектирования СНиП 52-01-2003 по прочности на сжатие предусмотрены следующие классы тяжёлого бетона: В3,5; В5; В7,5; B10; B15; В20; В25; В30; В35; В40; В45; В50; В55; В60; В65; В70; В75; В80; В85; В90; В95; В100; В105; В110; В115; В120.

Число, стоящее после буквы «В» в обозначении класса бетона, соответствует гарантированной прочности бетона на осевое сжатие, выраженной в МПа, с обеспеченностью 95%. Например, классу бетона В20 соответствует гарантированная прочность бетона 20 MПa.

Чтобы оценить количественно изменчивость прочности бетона и обеспечить её гарантированное для заданного класса бетона значение используют методы теории вероятностей.

Классы бетона по прочности на осевое растяжение (Вt0,4; Вt0,8; Вt1,2; Вt1,6; Вt2; Вt2,4; Вt2,8; Вt3,2; Вt3,6; Вt4; Вt4,4; Вt4,8; Вt5,2; Вt5,6; Вt6) устанавливаются для конструкций, работающих преимущественно на растяжение (например, стенок резервуаров и водонапорных труб).

Кроме того, при необходимости для более полной характеристи­ки качеств бетона могут устанавливаться марки бетона по морозо­стойкости F, по водонепроницаемости W и по средней плотности D.

В п. 5.1.3. СНиП 52-01-2003 предусмотрены бетоны следующих ма­рок:

по морозостойкости F15, F20, F25, F50, F75, F100, F150, F200, F300, F400, F500, F600, F700, F800, F900, F1000, они характеризуются числом циклов попеременного заморажи­вания и оттаивания в насыщенном водой состоянии, которые вы­держивает бетон без снижения прочности более чем на 15%;

число — величина давления воды в кгс/см 2 , при котором еще не наблюдается просачивания ее через испытуемый стандартный об­разец толщиной 15 см;

по средней плотности от D 200 до D 5000, соответствует среднему значению объемной массы бетона в кг/м 3 .

Для напрягающих бетонов устанавливают марку по самонапряжению.

При необходимости устанавливают дополнительные показатели качества бетона, связанные с теплопроводностью, температуростойкостью, огнестойкостью, коррозионной стойкостью (как самого бетона, так и находящейся в нем арматуры), биологической защитой и с другими требованиями, предъявляемыми к конструкции.

Читайте также:  Будет ли на бетоне держаться шпаклевка

Виды деформаций. Под деформативностью бетона понимается изме­нение его формы и размеров под влиянием различных воздействий (в том числе в результате взаимодействия бетона с внешней средой).

Бетон является упруго-пластическим материалом, в котором, на­чиная с малых напряжений, помимо упругих деформаций, появля­ются и неупругие остаточные или пластические, т. е. полная дефор­мация без учёта усадки равна:

В бетоне различают деформации двух основных видов: объём­ные, развивающиеся во всех направлениях под влиянием усадки или изменения температуры, и силовые, развивающиеся главным образом в направлении действия сил. Силовым продольным деформациям также соответствуют некоторые поперечные деформации бетона; начальный коэффициент поперечной деформации бетона v равен 0,2 (коэффициент Пуассона). Причём v остаётся практически по­стоянным вплоть до напряжений . При этом относительная продольная деформация будет , а поперечная деформация .

Силовые деформации в зависимости от характера приложения нагрузки и длительности её действия подразделяются на следующие три вида:

при однократном первичном загружении кратковременной на­грузкой;

при длительном действии нагрузки;

при многократном повторном действии нагрузки.

Наибольший практический интерес представляют продольные деформации бетона при осевом сжатии. Для изучения деформативности бетона при сжатии используют бетонные призмы с h/a = 4, чтобы исключить влияние на получаемые результаты сил трения, возникающих между опорными гранями образца и плитами пресса. На боковые грани призм в средней их части по высоте устанавли­вают приборы для замера деформаций (рис. 2.4а) или наклеивают электротензодатчики.

Нагрузка к призме прикладывается постепенно по этапам или ступеням (ступень обычно составляет 1/10. 1/20 от ожидаемой раз­рушающей нагрузки). Если деформации на каждой ступени прило­жения нагрузки замерять дважды: первый раз сразу после приложе­ния нагрузки и второй раз через некоторое время после выдержки под нагрузкой (обычно около 5 минут), то на диаграмме полу­чим ступенчатую линию, изображенную на рис. 1.7б. Деформации, измеренные сразу после приложения нагрузки, упругие и связаны с напряжениями линейным законом, а деформации, развивающие­ся за время выдержки под нагрузкой, неупругие и на диаграммеимеют вид горизонтальных площадок. При достаточно боль­шом числе ступеней загружения зависимость между напряжениями и деформациями может изображаться плавной кривой (рис. 2.4б).

Рисунок 2.4 – К определению продольных деформаций бетона при сжа­тии: а — опытный образец (призма) с наклеенными на боковых по­верхностях электротензодатчиками; б — диаграмма при при­ложении нагрузки ступенями; 1 — прямая упругих деформаций, 2 — кривая полных деформаций

Деформации бетона при однократном первичном загружении кратковременной нагрузкой. Его длительность обычно не превышает 60 минут. Диаграмма для этого случая показана нарис. 2.5. Степень её криволинейности зависит от продолжительности действия нагрузки, уровня напряжений и класса бетона, т. е. .

Полная относительная деформация при однократном загружении бетонной призмы кратковременно приложенной нагрузкой без учёта усадки бетона равна:

Рисунок 2.5 – Диаграмма зависимости между напряжениями и деформациями бетона при сжатии и растяжении: I – область упругих деформаций; II – область пластических деформаций; 1 – нагрузка; 2 – разгрузка; – предельная сжимаемость; – предельная растяжимость; – максимальная сжимаемость при нисходящей ветви диаграммы

т. е. она состоит из упругой части, равной и неупру­гой, которая после снятия нагрузки практически не исчезает. Точнее небольшая доля неупругих деформаций (около 10%) в течение некоторого времени после разгрузки исчезает. Эта часть пластической деформации называется деформацией упруго­го последействияεер. Кроме того, исчезает упругая составляющая пластической деформации εе1 характеризующая обратимое сплю­щивание пустот цементного камня. Таким образом, после разгрузки бетона окончательно остается остаточная деформация, возникаю­щая из-за необратимого сплющивания пустот цементного камня и излома их стенок εрl1 (рис. 2.5). R2- напряжение в момент, пред­шествующий началу интенсивного разрушения бетона (условная ве­личина).

При невысоких напряжениях () превалируют упругие деформации (), а при бетон можно рассмат­ривать как упругий материал. При осевом растяжении диаграмма имеет тот же характер что и при сжатии.

Деформации бетона при длительном действии нагрузки. При длительном действии нагрузки (t > 60 минут), даже постоянной, неупругие деформации с течением времени значительно увеличива­ются. В реальных же условиях в процессе строительства зданий и сооружений идёт постепенное ступенчатое нагружение элементов.

Нарастание неупругих деформаций при длительном действии на­грузки называется ползучестью бетона. Деформации ползуче­сти состоят из двух частей: пластической, протекающей почти од­новременно с упругой, и вязкой, для развития которой требуется определённое время. Деформации ползучести развиваются, главным образом, в на­правлении действия усилий и могут превышать упругие в 3. 4 раза.

Загруженный в раннем возрасте бетон (при прочих равных усло­виях) обладает большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влажной. Техно­логические факторы также влияют на ползучесть бетона: с увели­чением W/C и расхода цемента на единицу объёма бетонной смеси ползучесть возрастает; с повышением прочности зёрен заполнителя ползучесть уменьшается; с повышением класса бетона ползучесть уменьшается. Бетоны на пористых заполнителях обладают несколь­ко большей ползучестью, чем тяжёлые бетоны. Ползучесть зависит от вида цемента.

источник

При выборе бетонной смеси каждый сталкивается с вопросом, какие именно виды лучше подходят для применения в определенном проекте. Каждый отличается индивидуальными свойствами, сферами использования. Собственно, они предназначены для обозначения бетонных смесей согласно уникальным свойствам, это главные показатели качества, связанные с прочностью. Для того, чтобы ориентироваться в классах, марках материала, существуют таблицы с описанием всех параметров конкретного вида.

Прочность смеси зависит от правильно подобранного соотношения составляющих, влияние оказывают другие факторы. К таким относят качество воды, песка, незначительные изменения технологии в процессе приготовления, особенности застывания, условия укладки. Именно поэтому похожие маркировки могут иметь неодинаковую прочность.

Уровень прочности, учитывая перечисленные факторы, называют классом. Это параметр, означающий допустимое значение возможного ухудшения качества при условии, что прочность равна указанной. В проектных документах строительства указывают класс. Важно правильно соотносить характеристики – для этого существуют специальные таблицы.

Читайте также:  Виды лестниц из бетона для дома

Марка главным образом зависит от количества цемента в бетонной смеси. Бетон с высшим числом более сложен в использовании – чем выше значение, тем меньше период застывания. При выборе важно подобрать правильное соответствие качества-цены. Проверить прочность можно в лабораторных условиях неразрушающим методом – предполагается сжатие образцов сильным прессом.

Главный критерий, согласно которому определяются с необходимой маркой – вид предполагаемого сооружения. Для подготовительных работ при заливке фундамента, дорожных работах используют М-100, М-150. Наиболее известным считается М-200, сфера использования которого довольно широка – сооружение лестниц, опорных стен, заливка фундамента.

Для заливки монолитных фундаментов преимущественно используют М-350 – такой бетон способен выдержать существенные нагрузки. М-250, М-300 постепенно уходят с рынка строительных материалов, являются промежуточными, используются достаточно редко. Высшие маркировки бетона используют для постройки гидротехнических объектов, плотин, дамб – иными словами, конструкций, подвергающихся постоянному большому давлению, к которым выдвигают особые требования.

Классы обозначают латинской буквой «В», цифра рядом показывает нагрузку в мегапаскалях, которую бетон выдержит в 95% случаев. Полный спектр классов находится в диапазоне 3,5 – 80 МПа. Марки обозначают буквой «М», цифра показывает, сколько цемента в готовой бетонной смеси. Обозначение марки расшифровывает границу прочности, который измеряют в кгс/см2.

Высокая прочность – главная определяющая качества, поэтому чем выше значение – тем смесь дороже.

На первый взгляд, к марке и классу применяют одинаковый критерий определения, но между ними есть существенные отличия. Первая показывает средние технические свойства материала, второй определяет уровень прочности материала при эксплуатации. Фактически, маркирование говорит о том, какое количество цемента присутствует в данной смеси, классовое же число показывает, какую максимальную нагрузку выдержит конструкция в 90-95% случаев. Указанные параметры взаимозависимы, их соответствие можно определить с помощью специальной таблицы.

В первую очередь, определяет предел прочности на сжатие. Показатель гарантирует, что в процессе эксплуатации материал выдержит определенную нагрузку, которая указана рядом с буквой «В» в мегапаскалях в возможной погрешностью в 13,5% (коэффициент вариации). На прочность влияют следующие факторы:

  • Количество цемента – чем больше цемента содержится в смеси, тем быстрее она застывает и прочнее становится.
  • Водоцементное соотношение – большое количество воды приводит к образованию пор, что значительно уменьшает прочность.
  • Активность цемента – надежные сооружения производят из цемента высокой прочности.
  • Степень уплотнения бетонной смеси – правильная технология смешивания, использование виброимпульсов и метода турбосмешивания значительно повышают степень прочности готового бетона.
  • Качество заполнителей – добавление примесей (глины, мелкозернистых добавок) приводит к снижению прочности состава.

Вернуться к оглавлению

Маркировка зависит от плотности, качества используемых составляющих и водоцементного соотношения. Допустимые границы последнего параметра – от 0,3 до 0,5. Увеличение показателя означает снижение характеристик прочности материала. Различают несколько видов марок – по прочности, морозостойкости, водонепроницаемости.

Находятся в диапазоне от М-50 до М-1000, показывает среднее значение прочности на сжатие, означает конкретный вид цемента, который использовали при приготовлении бетонной смеси, соотношение всех составляющих раствора и примерное время застывания. Соответствие определенного числа перечисленным параметрам можно узнать из таблиц.

Еще один важный параметр, который напрямую влияет на качество материала. Особенное внимание ему уделяют при разработке проектов в холодных регионах. Низкие температуры губительно влияют на бетон, разрушая структуру. Влага, попадая на поверхность, просачивается в поры материала, после замерзания увеличивается в объеме. Процесс постоянного замерзания-оттаивания приводит к появлению мелких трещин, которые со временем расширяются.

Морозостойкий материал получают с помощью специальных химических добавок, которые досыпают в раствор в количестве, указанном в инструкции. Данные материалы имеют свою маркировку, существуют в диапазоне от F-50 до F-1000. Показатель возле буквы показывает, сколько циклов оттаивания-замерзания может перенести материал без ухудшения исходных свойств.

Характеризует способность материала сопротивляться негативному влиянию влаги. Показатель выводят из значения прочности после нескольких циклов увлажнения-высыхания, составляя соотношение прочности до и после испытания. Показатель находится в диапазоне от W-2 до W-200, где цифра – допустимый уровень давления воды. Чем выше данный параметр, тем качественнее смесь, дороже ее стоимость.

В первую очередь, выбор зависит от особенностей задуманного проекта, его размеров и погодных условий – в этом случае, стоит обратить внимание на дополнительные возможности, способность противостоять негативным воздействиям. Ориентируясь на значение прочности, оставляйте небольшой запас, нарушение технологии раствора несколько снижает указанное число.

Соблюдая следующие рекомендации, можно упростить проблему выбора нужного материала:

  • Для предварительных работ, стяжек, заливки фундамента под одноэтажные сооружения используйте менее прочные бетоны – до М-150 включительно.
  • М-200 – одна из наиболее часто используемых, подходит для тех же работ, используется при сооружении лестниц, перегородок.
  • М-300 – самый оптимальный вариант из соображений соотношения качества-цены. Сфера применения очень широка – перекрытия, ленточные фундаменты, стены, заборы.
  • M-350 подходит для строительства опор, искусственных водоемов, при производстве железобетона. Из данного материала получается очень надежный фундамент, он отлично подходит при свайном методе заливки.
  • М-400 незаменим при строительстве на проблемных участках, строительстве зданий с подвальными помещениями, сооружении погребов. В промышленной деятельности используют для стройки хранилищ, мостов.

Вернуться к оглавлению

Маркирование – показатель приблизительных, средних технических характеристик материала, в то время как классификация на 90-95% гарантирует соответствие требуемым параметрам. Свойства первого выделяют по трем характеристикам – прочность, морозостойкость, водонепроницаемость, которые обозначают буквами M, F, W соответственно.