Влияние низкой температуры на прочность бетона
Влияние температуры на прочность бетона
Мы уже видели, что повышение температуры при твердении ускоряет химические реакции гидратации и таким образом благотворно воздействует на рост прочности бетона в ранние сроки без каких-либо отрицательных последствий, влияющих на последующую прочность. Однако более высокая температура при укладке и схватывании, хотя и повышает очень раннюю прочность, может неблагоприятно повлиять на прочность в возрасте от 7 суток и больше. Это объясняется тем, что при быстрой начальной гидратации образуются продукты с более плохой физической структурой, возможно более пористой, поэтому значительная часть пор всегда остается незаполненной. Из отношения гель: : пространство вытекает, что это может привести к более низкой прочности по сравнению с менее пористым цементным камнем, хотя в нем происходила медленная гидратация, в конечном счете в таком цементном камне достигается высокое отношение гель : пространство.
Были также проведены опыты на бетонах, хранившихся в воде при различных температурах в течение 28 суток, а затем при температуре 22 8° С Как и в опытах Прайса, высокая температура привела к высокой прочности в течение первых нескольких суток после изготовления но затем в возрасте от одной до четырех недель положение существенно изменилось (рис. 5.30). Образцы, выдержанные до 28 суток при температурах от 4,4 до 22,8° С, показали более высокую прочность по сравнению с образцами, выдержанными при температуре от 32,2 до 43 3° С Для последних снижение прочности было тем больше, чем выше была температура; в интервале более низких температур имеется оптимальная, при которой бетон приобретает самую высокую прочность. Интересно отметить, что даже бетон, изготовленный при 4,4° С и хранившийся при низкой температуре (—3,9° С) в течение четырех недель, а затем при 23,9° С после трех месяцев, прочнее такого же бетона, хранившегося при постоянной температуре 23,9° С. На рис. 5.31 показаны типичные кривые для бетона с расходом портландцемента 305 кг/м? при 4,5% вовлеченного воздуха. Подобное поведение наблюдалось, когда использовался быстротвердеющий портландцемент и модифицированный цемент. В бетонах с добавкой хлористого кальция вредное воздействие высокой температуры в период схватывания ослабляется.
Повышение прочности, вызванное добавлением хлористого кальция, зависит от температуры бетона и пропорционально возрастает с понижением температур. Например, при 12° С добавление 2% повышает односуточную прочность на 140%, а относительное увеличение в той же смеси при 48,9° С дает только 50%. Подобного поведения следовало ожидать, поскольку степень гидратации при более высоких температурах выше даже без катализатора, так что для действия остается мало возможности. Хлористый кальций обычно употребляется только при нормальных или низких температурах.
Опыты Клигера показывают, что существует оптимальная температура в раннем возрасте бетона, при которой обеспечивается наивысшая прочность в желаемом возрасте. Для бетона, изготовленного в лаборатории из обычного или модифицированного цемента, оптимальная температура примерно 12,8° С, для быстротвердеющего портландского цемента — около 4,4° С. Не следует забывать, однако, что после начального периода схватывания и твердения влияние температуры в определенном интервале соответствует правилу твердения: более высокая температура способствует росту прочности.
Все описанные до сих пор опыты проводили в лаборатории, и, по-видимому, режим на строительной площадке в жарком климате не может быть таким же. Существуют некоторые дополнительные факторы воздействия: влажность окружающей среды, прямая радиация солнца, скорость ветра и метод ухода. Следует напомнить также, что качество бетона зависит от его температуры, а не от температуры окружающей атмосферы. К тому же уход путем орошения в ветреную погоду приводит к потере тепла в результате испарения, так что температура бетона будет ниже, чем при применении изолирующих пленок. Шалон установила, что испарение непосредственно после изготовления благоприятно, возможно, потому, что вода испаряется из бетона в то время, когда капилляры еще могут разрушаться, что уменьшает эффективно водоцементное отношение. Если, однако, испарение приведет к высыханию поверхности, то может возникнуть пластическая усадка и образование трещин.
Опыты показали, что в жарких и сухих условиях, например в пустыне, прочность бетона уменьшается с увеличением температуры до критического значения примерно при 30° С, но между 30 и 45° С может быть незначительная упругая деформация или снижения прочности не будет. Подобное поведение наблюдалось при применении бетона без вовлеченного воздуха, твердевшего при относительной влажности от 20 до 70%. Возможно, что присутствие или отсутствие вовлеченного воздуха обусловили, по крайней мере частично, различия между результатами Клигера и Шалон. По-видимому, мы еще не знаем всех факторов, относящихся к данной проблеме, и прежде, чем начать строительство в новом климате, следует провести тщательные опыты на строительной площадке.
В целом, однако, можно ожидать, что бетон, укладываемый летом, будет иметь более низкую прочность, чем аналогичный бетон, изготовленный зимой. И действительно, на многих строительных площадках прочность контрольных образцов была ниже в жаркую погоду, хотя после раскрытия форм в возрасте 24 ч они выдерживались в воде при 17,8° С. В тропических странах также наблюдалась подобная более низкая прочность бетона
источник
При возведении монолитных конструкций на строительной площадке бетон твердеет в условиях, которые зависят от времени года и климатических особенностей местности. На набор прочности бетоном большое влияние оказывают температурно-влажностные условия твердения. Снижение влажности воздуха вызывает испарение воды с поверхности отформованного бетонного изделия, что приводит к появлению усадочных трещин, обезвоживанию бетона, прекращению набора прочности в условиях дефицита воды (рис. 6.7) и формированию дефектной, водопроницаемой структуры. Поэтому бетон необходимо выдержать во влажном состоянии при нормальных условиях температура (20 ± 3)°С, влажность (95 ± 5)% не менее 7 суток после бетонирования, а при высоких температурах твердения до достижения 50 – 70% нормируемой прочности.
Рис. 6.7. Влияние условий хранения на нарастание прочности бетона [4]:
1 – постоянно водное хранение; 2 – постоянно воздушное хранение; воздушное хранение после начального водного хранения: 3 – 3 сут; 4 – 7 сут; 5 – 14 сут; 6 – 28 сут
Снижение температуры твердения, что имеет место при производстве бетонных работ в осенне-весенний период вследствие уменьшения химической активности воды затормаживает процесс набора прочности (рис. 6.8), что в большей степени характерно для пуццоланового портландцемента и шлакопортландцемента, содержащих большое количество минеральных добавок.
Установлено, что при понижении температуры до отрицательной
(– 5°С) твердение бетона очень замедленно продолжается за счет незамерзающей воды, которая содержится в мельчайших порах (см. рис. 6.8). Дальнейшее понижение температуры до – 10°С и ниже прекращает процесс гидратации. Последующее нарастание прочности при оттаивании бетона и набор нормируемой прочности зависят от происшедших структурных изменений в бетоне. Если замораживание наступило сразу после укладки бетона в конструкцию, то дальнейшее повышение температуры приводит к оттаиванию бетона и набору им заданной прочности. Если бетон замерз после набора той «критической» прочности, когда сформировавшаяся структура бетона уже способна к восприятию без разрушения давления замерзающей воды, то потери конечной прочности будут малы. Значительный недобор прочности (30 – 40%) может иметь место только при условии замораживания бетона на стадии формирования структуры, когда напряжения, возникающие от давления льда вследствие увеличения его объема по отношению к воде на 9% выше, чем прочность контактов между кристаллическими продуктами гидратации. Происшедшие разрушения не восстанавливаются при последующем твердении в условиях положительных температур, что и влечет за собой формирование дефектной структуры с низкой прочностью.
Рис. 6.8. Нарастание прочности бетона на портландцементе
в зависимости от температуры твердения [14]
Для набора «критической» прочности, которая составляет в зависимости от класса бетона 25 – 50%, применяют комплекс мер: использование высокоэффективных быстротвердеющих портландцементов; снижение расхода воды затворения; введение специальных противоморозных добавок, обеспечивающих гидратацию вяжущего за счет понижения температуры замерзания раствора; теплоизоляцию поверхности свежеуложенного бетона, приготовленного на подогретых заполнителях и воде или с применением противоморозных добавок (метод термоса), а также тепловую обработку с использованием энергии пара, нагретого воздуха или электрического тока. Тепловую обработку применяют и при нормальных условиях твердения, когда хотят получить заданную прочность бетона в более короткий срок. Именно этот технологический прием используют при получении сборного железобетона на заводах. Наибольшее распространение получили следующие методы: термовлажностная обработка при нормальном и повышенном давлениях, электропрогрев и гелиообработка.
Термовлажностную обработку (ТВО)при обычном давлении проводят с использованием специальных герметичных камер, режим работы которых предусматривает повышение температуры до 70 – 95°С в условиях насыщенного пара. Весь процесс можно разделить на четыре основных этапа: предварительная выдержка бетона до начала схватывания; медленный подъем температуры до максимальной заданной; выдержка при этой температуре и последующее медленное охлаждение бетонных изделий. Первый этап может составлять от 1,5 до 3,5 часов и зависит от жесткости смеси, вида применяемого цемента и добавок. Так как его продолжительность фактически определяется сроками схватывания и структурообразования, то следовательно при использовании более активных цементов, смесей с малым водосодержанием и добавками ускорителями выдержка минимальна. Применение шлако- и пуццоланового портландцемента, пластичных смесей и добавок пластификаторов, несколько замедляющих процесс гидратации цемента в первые часы контакта вяжущего с водой, требует удлинения этого периода.
Второй этап – подъем температуры характеризуется показателями скорости, которая может составлять от 10 до 30 о С/ч. Чем раньше бетон приобретет минимальную структурную прочность, способную противостоять давлению пара и газообразных продуктов, тем больше может быть скорость подъема температуры. Следовательно, продолжительность этого периода тесно связана с предыдущим. При наличии факторов, обусловливающих сокращение времени выдержки, скорость подъема температуры может составлять 30 о С/ч. Максимальная температура зависит от активности портландцемента (рис. 6.9) и составляет для высокоактивного быстротвердеющего портландцемента 50 – 60 о С, рядового – 70 – 80 о С, шлако- и пуццоланового – 85 – 90 о С. Время изотермии определяется заданной заказчиком прочностью бетона после ТВО, которая, как правило, составляет 50 – 70% нормируемой. В отдельных случаях, когда строителями предусматривается нагружение конструкции расчетной проектной нагрузкой, отпускная прочность соответствует нормируемой – 100% R28. Большое влияние на качество пропаренного бетона оказывает перепад температуры и влажности, вызывающий перемещение воды и пара в еще непрочном бетоне, приводящее к разрыхлению структуры. Поэтому ускорение набора прочности бетоном с использованием ТВО обусловливает формирование более дефектной структуры по сравнению с бетоном, твердевшим в нормальных температурно-влажностных условиях. Как следствие, это ведет
к снижению его водонепроницаемости, морозостойкости и коррозионной стойкости. Для исключения влагопотерь с поверхности бетонных изделий при ТВО необходимо использовать рулонные пароизоляционные материалы (полимерные пленки, прорезиненную ткань, рубероид и т.д.), пленкообразующие составы (латексные, водные эмульсии синтетических каучуков), наносимые распылением на поверхность свежеотформованного бетона, иди добавки депрессоры испарения (высшие жирные спирты). Их защитное использование позволяет проводить термообработку продуктами сгорания природного газа без ухудшения свойств бетона.
Рис. 6.9. Кривые нарастающей прочности бетона при пропаривании:
а – для портландцемента; б – для шлакопортландцемента [1]
Уменьшить продолжительность ТВО на 3 – 6 часов и снизить энергоемкость процесса можно путем совмещения интенсивного механического и теплового воздействия на бетон. Применение в период структурообразования механических воздействий (динамометрическая обработка) способствует ускорению набора прочности и повышению плотности бетона. Механическое давление на твердеющую смесь, составляющее 10 – 70 г/см 2 , по рекомендации НИИЖБа может создаваться специальным пригрузом, жесткой крышкой форм, пакетированием изделий или избыточным давлением пара в камере. Один из путей снижения энергозатрат при ТО – применение комплексных добавок, состоящих из ускорителей и суперпластификаторов. Основной эффект последних связан с возможностью снижения расхода воды при сохранении заданной пластичности самого теплоемкого компонента бетонной смеси на 20% и более. Применение этих добавок позволяет не только снизить температуру изотермии, но и отказаться от использования бездобавочных (клинкерных) энергоемких цементов при получении бетонов прочности 60 – 70 МПа, а также уменьшить в 3 – 5 раз продолжительность и интенсивность виброуплотнения.
Повышение температуры ТВО свыше 100°С еще в большей степени ускоряет процесс твердения бетона. Так как гидратация минерального вяжущего может протекать только в присутствии воды, то с целью предупреждения ее вскипания и испарения этот вид термообработки проводят при повышенном давлении. Запаривают бетон в специальных герметичных камерах – автоклавах. Помимо ускорения твердения запаривание приводит к дополнительному образованию кристаллических соединений, повышающих прочность бетона до 50 – 100 МПа. По автоклавной технологииполучают цементные изделия, а также силикатные кирпичи и бетоны,
в которых в качестве вяжущего используют тонкомолотую смесь, состоящую из гашеной или негашеной извести и кремнезема. Полный цикл автоклавной обработки состоит из пяти этапов: впуск пара и постепенный нагрев до 100°С; повышение температуры и давления пара до максимальных значений – соответственно 175 – 203°С и 0,8 – 1,6 МПа; затем выдерживание изделий при заданных температуре и давлении; снижение давления до нормального и температуры до 100 °С и пятый – остывание изделий до температуры окружающей среды.
В качестве источника тепла при производстве сборного железобетона и при зимнем бетонировании монолитных конструкций используют также энергию электрического тока. Электропрогрев бетона может быть осуществлен или за счет прохождения электрического тока по металлической форме и арматуре и перехода электрической энергии вследствие высокого электросопротивления стали в тепловую, или через свежеуложенный бетон между двумя электродами. В этом случае разогрев бетона обусловлен высоким электросопротивлением свежеуложенной смеси, содержащей жидкую фазу, насыщенную электролитами.
В летний период сложность получения качественного бетона с заданными свойствами связана с тем, что, во-первых, при перевозке бетона вследствие ускорения процесса гидратации наблюдается быстрое загустевание бетонной смеси, сопровождаемое потерей ее подвижности, и, во-вторых, высокая температура и низкая влажность воздуха вызывают интенсивное испарение воды с поверхности отформованных изделий. Последнее приводит к появлению усадочных трещин и формированию непрочного поверхностного слоя. Поэтому перевоз бетонной смеси осуществляют в специально оборудованных самосвалах с укрытием бетонной поверхности пленочными материалами или в бетоновозах. Для удлинения времени схватывания вводят добавки – замедлители твердения или часть воды заменяют льдом. При приготовлении и укладке бетонной смеси на месте процесс твердения ускоряют, чтобы бетон успел набрать прочность до испарения воды путем введения добавок – ускорителей твердения или применения быстротвердеющего портландцемента. Поверхность бетона после схватывания покрывают слоем мокрого песка или опилок с последующей защитой их воздухо- и влагонепроницаемым пленочным материалом до набора бетоном 50 – 70 % нормируемой прочности.
В практику строительства все шире внедряют гелиотермообработку железобетонных изделий, при которой в качестве теплоносителя используют солнечную энергию. Для этого применяют или гелиоформы, фокусирующие энергию солнца, или специальные пленочные покрытия черного цвета. Интенсифицировать этот процесс можно также за счет комплексного использования энергии солнца в сочетании с быстротвердеющим цементом и добавками – ускорителями твердения.
Дата добавления: 2016-04-22 ; просмотров: 1872 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
источник
Мы уже видели, что повышение температуры при твердении ускоряет химические реакции гидратации и таким образом благотворно воздействует на рост прочности бетона в ранние сроки без каких-либо отрицательных последствий, влияющих на последующую прочность. Однако более высокая температура при укладке и схватывании, хотя и повышает очень раннюю прочность, может неблагоприятно повлиять на прочность в возрасте от 7 суток и больше. Это объясняется тем, что при быстрой начальной гидратации образуются продукты с более плохой физической структурой, возможно более пористой, поэтому значительная часть пор всегда остается незаполненной. Из отношения гель: пространство вытекает, что это может привести к более низкой прочности по сравнению с менее пористым цементным камнем, хотя в нем происходила медленная гидратация, в конечном счете в таком цементном камне достигается высокое отношение гель : пространство.
Были также проведены опыты на бетонах, хранившихся в воде при различных температурах в течение 28 суток, а затем при температуре 22 8° С Как и в опытах Прайса, высокая температура привела к высокой прочности в течение первых нескольких суток после изготовления но затем в возрасте от одной до четырех недель положение существенно изменилось. Образцы, выдержанные до 28 суток при температурах от 4,4 до 22,8° С, показали более высокую прочность по сравнению с образцами, выдержанными при температуре от 32,2 до 43 3° С Для последних снижение прочности было тем больше, чем выше была температура; в интервале более низких температур имеется оптимальная, при которой бетон приобретает самую высокую прочность. Интересно отметить, что даже бетон, изготовленный при 4,4° С и хранившийся при низкой температуре (—3,9° С) в течение четырех недель, а затем при 23,9° С после трех месяцев, прочнее такого же бетона, хранившегося при постоянной температуре 23,9° С. На рис. 5.31 показаны типичные кривые для бетона с расходом портландцемента 305 кг/м при 4,5% вовлеченного воздуха. Подобное поведение наблюдалось, когда использовался быстротвердеющий портландцемент и модифицированный цемент. В бетонах с добавкой хлористого кальция вредное воздействие высокой температуры в период схватывания ослабляется.
Повышение прочности, вызванное добавлением хлористого кальция, зависит от температуры бетона и пропорционально возрастает с понижением температур. Например, при 12° С добавление 2% повышает односуточную прочность на 140%, а относительное увеличение в той же смеси при 48,9° С дает только 50%. Подобного поведения следовало ожидать, поскольку степень гидратации при более высоких температурах выше даже без катализатора, так что для действия остается мало возможности. Хлористый кальций обычно употребляется только при нормальных или низких температурах.
Опыты Клигера показывают, что существует оптимальная температура в раннем возрасте бетона, при которой обеспечивается наивысшая прочность в желаемом возрасте. Для бетона, изготовленного в лаборатории из обычного или модифицированного цемента, оптимальная температура примерно 12,8° С, для быстротвердеющего портландского цемента — около 4,4° С. Не следует забывать, однако, что после начального периода схватывания и твердения влияние температуры в определенном интервале соответствует правилу твердения: более высокая температура способствует росту прочности.
Все описанные до сих пор опыты проводили в лаборатории, и, по-видимому, режим на строительной площадке в жарком климате не может быть таким же. Существуют некоторые дополнительные факторы воздействия: влажность окружающей среды, прямая радиация солнца, скорость ветра и метод ухода. Следует напомнить также, что качество бетона зависит от его температуры, а не от температуры окружающей атмосферы. К тому же уход путем орошения в ветреную погоду приводит к потере тепла в результате испарения, так что температура бетона будет ниже, чем при применении изолирующих пленок. Шалон установила, что испарение непосредственно после изготовления благоприятно, возможно, потому, что вода испаряется из бетона в то время, когда капилляры еще могут разрушаться, что уменьшает эффективно водоцементное отношение. Если, однако, испарение приведет к высыханию поверхности, то может возникнуть пластическая усадка и образование трещин.
Опыты показали, что в жарких и сухих условиях, например в пустыне, прочность бетона уменьшается с увеличением температуры до критического значения примерно при 30° С, но между 30 и 45° С может быть незначительная упругая деформация или снижения прочности не будет. Подобное поведение наблюдалось при применении бетона без вовлеченного воздуха, твердевшего при относительной влажности от 20 до 70%. Возможно, что присутствие или отсутствие вовлеченного воздуха обусловили, по крайней мере частично, различия между результатами Клигера и Шалон. По-видимому, мы еще не знаем всех факторов, относящихся к данной проблеме, и прежде, чем начать строительство в новом климате, следует провести тщательные опыты на строительной площадке.
В целом, однако, можно ожидать, что бетон, укладываемый летом, будет иметь более низкую прочность, чем аналогичный бетон, изготовленный зимой. И действительно, на многих строительных площадках прочность контрольных образцов была ниже в жаркую погоду, хотя после раскрытия форм в возрасте 24 ч они выдерживались в воде при 17,8° С. В тропических странах также наблюдалась подобная более низкая прочность бетона.
источник
Бетон – это особая смесь из воды, цемента, песка и других наполнителей. Затвердев, этот искусственный камень приобретает прочность, долговечность и отличную стойкость. Стойкость бетонного состава определяется его невосприимчивостью к влаге, различным температурным перепадам, не теряя при этом своих прочностных свойств. У этого строительного материала низкий предел горючести, что не влечет за собой распространения пожара при воздействии на него повышенных нагревов. Бетонным постройкам, зданиям и сооружениям, за счет качеств раствора, обеспечивается отличная огнестойкость. Изделия из бетона обладают не только огнестойкостью, но и высокой жаростойкостью.
Огнестойкость бетона – это качество, позволяющее стройматериалу противостоять повышенным температурам недолговременно, например, во время пожара. Жаростойкость – это сохранение свойств бетонного раствора при долговременном действии на него большой температуры, например, при использовании конструкций для теплообработки разнообразных изделий. Всем бетонам присуща огнестойкость, чего нельзя сказать о жаростойкости, этим качеством обладает далеко не каждый застывший раствор.
Несмотря на то, что бетон – пожаробезопасный и огнестойкий строительный материал, он все равно поддается большим температурным градусам. Огни, воздействующие на него в течение короткого времени, не способны привести к повреждению прочностных характеристик материала, но если огонь имеет продолжительное влияние на бетонные изделия, тогда происходит их повреждение. Если температура двести пятьдесят градусов, тогда бетон теряет свою прочность всего на двадцать пять процентов, а если в пределах пятисот градусов – стройматериал подвергается полному разрушению.
Бетонный состав, горючесть которого низкая, имеет повышенную прочность и стойкость к огненным влияниям, но может разрушиться и потерять свои прочностные характеристики как при пожаре, так и неправильном обращении с подогретым составом. Таким образом, резкое увлажнение или охлаждение уже подогретой смеси, влечет за собой образование трещин, разрушений, которые не поддаются устранению, а также ослабеванию арматурной конструкции, служащих для укрепления построек.
Горение отрицательно сказывается на структуре бетона, она разрушается и разлагается на составляющие компоненты цементного камня.
Жаростойкость бетонного состава получается путем введения в раствор специальных добавок на основе алюминия и кремния. Эти составляющие позволяют избегать плавления, горения в момент пожара и других разрушений бетонных конструкций при повышенных температурных режимах. Что касается огнестойкости, то она достигается путем добавления заполнителей в процессе приготовления раствора.
Температурные режимы, воздействующие на бетонный состав, в пределах 250 – 300 градусов влекут за собой разрушение структуры и уменьшение прочностных характеристик цементного камня. Когда на градуснике отметка достигает пятисот пятидесяти градусов по Цельсию, имеющиеся в бетоне песок и щебень подвергаются растрескиванию, если превышает 550 градусов – бетонные конструкции полностью разрушаются.
Повышение температурных показателей непосредственно влияет на прочность бетонного состава. Таким образом, при укладке и застывании раствора повышение отметки на градуснике может повлиять на прочность бетона, возраст которого начинается от семи суток и более. Происходит это из-за ускоренной гидратации, в результате чего достигается несовершенная физическая структура с большим количеством незаполненных пор. По результатам опытов было замечено, что при повышенных температурных показателях прочность бетонного раствора на высшем уровне в первые дни, после схватывания состава, но уже на четвертые сутки прочностные характеристики значительно опускаются. Чтобы улучшить прочность раствора, в него добавляют хлористый кальций, который способен повысить стойкость к повышенным температурным показателям.
Жароупорный бетонный раствор основан на портландцементе, с помощью которого смесь из песка, щебня, цемента и воды способна выдерживать повышенные температурные показатели до тысячи градусов по Цельсию и выше. Помимо основных составляющих бетона и портландцемента, в него также входит алюминиевая добавка мелких фракций и кремниевая. Добавки в растворе позволяют связывать гашеную известь, которая образуется при гидратации цементного камня. Жароупорный строительный материал из смеси цемента, песка, щебня и воды также имеет в своем составе следующие заполнители, которые предотвращают плавление, деформацию и разрушение бетонных изделий даже в момент пожара:
В зависимости от наполнителей определяется максимальный температурный режим жароупорного бетона. Приготовить такой раствор можно и собственноручно на строительной площадке.
На огнестойкость железобетонных конструкций влияют следующие параметры:
- нагрузка на постройку;
- толщина защитного яруса;
- размеры сечения сооружений;
- количество и диаметр арматурный конструкций.
Чем меньше плотность используемого материала и чем больше его толщина, тем выше предел огнестойкости, который зависит и от вида опоры для конструкции, и от статической схемы. Исходя из этого, строители должны произвести расчет по огнестойкости ж/б конструкций, прежде чем приступать к их заливке. Конструкции, которые имеют горизонтальное положение, поддаются разрушениям под действием нагрева нижней арматуры, поэтому предел нагрева, прежде всего, зависит от класса арматурной конструкции, способности материала проводить тепло и от размеров слоя защиты.
Горизонтальные конструкции – это балочные плиты, балки, настилы и панели, прогоны и др. Конструкции, которые имеют тонкие стены и поддаются изгибаниям – это настилы, ригели, балки, панели ребристые и пустотелые. Огнестойкость колонн основана на следующих показателях:
- процент армирования;
- нагрузка на конструкции;
- вид крупнофракционного заполнителя;
- размер сечения под прямым углом относительно продольной оси;
- толщина слоя защиты на арматуре.
В процессе заливки колонн следует обязательно придерживаться инструкции. Колонны разрушаются в результате открытого огненного пламени при снижении прочностных характеристик бетонного раствора и арматурной конструкции.
Ячеистый бетон представляет собой пористый искусственный материал, который используется в строительстве различных зданий и сооружений. В его состав входят минеральные вяжущие и кремнеземистые заполнители. Применяют ячеистый строительный материал из смеси цемента, песка, щебня и воды для теплоизоляции помещений, им утепляют железобетонные плиты и перекрытия, используют легкий бетон для теплозащиты поверхности различных оборудований, трубопроводов, которые используются при температурных режимах свыше четырехсот и даже семисот градусов по Цельсию.
Огнестойкость ячеистого бетона выше, если плотность строительного материала минимальна, таким образом, предельные показатели огнестойкости газоблоков и других изделий из пористого стройматериала повышены.
По исследованиям и опытам, которые проводили в шведском и финском учебном заведении, определена прочность ячеистого бетонного состава, которая изменяется при нагревании следующим образом:
- происходит увеличение прочностных характеристик до восьмидесяти пяти процентов, если температурные показатели не выше четырехсот градусов по Цельсию;
- понижение прочностных характеристик до изначальных происходит при разогреве материала до семисот градусов по Цельсию;
- снижение прочности ячеистого бетонного состава на восемьдесят шесть процентов осуществляется при разогреве строительного материала до тысячи градусов и не более при этом прочностной показатель принимает стабильность.
Можно сделать вывод, что предельные значения огнестойкости ячеистых блоков достигают девятисот градусов по Цельсию, когда обычный бетонный состав начинает терять свои основные части прочности при значении от четырехсот до семисот градусов. Таким образом, ячеистый бетон наиболее популярен при возведении зданий и сооружений, где требуются повышенные показатели пожаробезопасности.
Бетон представляет собой строительный материал, который обладает отличными прочностными характеристиками, имеет повышенные показатели огнестойкости и при добавлении в состав бетонного раствора специальных наполнителей, приобретает жаростойкость. На огнестойкость и жаростойкость бетонного раствора влияют различные показатели и факторы, например, материал, который используется в качестве наполнителя, или же конструкции, которые возводят из строительного материала на основе песка, цемента, щебня и воды.
Чтобы готовое изделие из бетона, после заливки, набрало необходимую проектную прочность и прослужило долгие годы, необходимо соблюдать температурный режим во время твердения. Оптимальная температура для твердения бетона +20С, при которой бетон набирает прочность за 28 суток. Но что делать, если вы заливаете фундамент осенью, когда температура воздуха чуть выше нуля? Современные технологии позволяют справиться с этой проблемой. Более того, при соблюдении определённых мер, бетонные работы можно производить даже зимой.
Чтобы ответить на вопрос: «При какой температуре можно заливать бетон?», необходимо понять, что происходит с бетоном во время твердения. После приготовления бетонной смеси в ней начинает происходить химическая реакция между водой и цементом. Этот процесс называют гидратацией цемента, которая проходит две стадии:
При схватывании в реакции участвуют алюминаты (С3А). В результате образуются иглообразные кристаллы, которые связываются между собой. Спустя 6 — 10 часов из этих кристаллов образуется подобие скелета.
С этого момента начинается твердение бетона. Здесь уже вступают в реакцию с водой клинкерные минералы (C3S и C2S) и начинает формироваться силикатная структура. В результате этой реакции образуются мелкие кристаллы, которые объединяются в мелкопористую структуру, что по сути и является бетоном.
Скорость течения гидратации сильно зависит от температуры. Снижение температуры с +20С до +5С увеличивает время твердения бетона до 5 раз. Но особенно резко замедляется реакция при дальнейшем снижении до 0С. А при отрицательной температуре гидратация прекращается, т.к. вода замерзает. Как известно, вода при замерзании расширяется. Это приводит к увеличению давления внутри бетонной смеси и разрушению сформировавшихся связей кристаллов. Как следствие происходит разрушение структуры бетона. Также образовавшийся лёд обволакивает крупные элементы заполнителей смеси (щебень, арматуру), разрушая их связи между цементным тестом. Это приводит к ухудшению монолитности конструкции.
При оттаивании воды процесс твердения возобновляется, но уже при деформированной структуре бетона. Что может привести не только к отслоению арматуры и больших элементов заполнителя бетонной смеси, но и к трещинам. Естественно, прочность такой бетонной конструкции будет гораздо меньше расчетной.
Следует заметить, что чем раньше бетон подвергся замораживанию, тем меньше будет его прочность.
Так как низкая температура значительно снижает скорость твердения, а мороз губительно сказывается на конструкции в целом, значит бетон надо согреть. Причем необходимо обеспечить равномерный прогрев. Минимальная температура для заливки бетона должна быть выше +5С. Если температура внутри смеси будет больше температуры снаружи смеси, то это может привести к деформации конструкции и образованию трещин. Прогревают бетон до момента набора критической прочности. При отсутствии данных в проектной документации о значении критической прочности она должна быть не менее 70% от проектной прочности. Если установлены требования по показателям морозостойкости и водонепроницаемости, то критическая прочность должна быть не менее 85% от проектной.
При заливке бетона в минусовую температуру используют разные технологии прогрева бетона. Чаще всего применяют способы:
Данный метод используется при массивных конструкциях. Он не требует дополнительного обогрева, но температура укладываемой смеси должна быть более +10С. Суть данного метода состоит в том, чтобы уложенная смесь, остывая, успела набрать критическую прочность. Химическая реакция твердения бетона является экзотермической, т.е. выделяется тепло. Поэтому, бетонная смесь подогревает сама себя. При отсутствии теплопотерь бетон может разогреться до температуры более 70С. Если опалубку и открытые поверхности защитить теплоизолирующим материалом, снизив таким образом теплопотери твердеющего бетона, вода не замерзнет и бетонная конструкция будет набирать прочность.
Для реализации метода термоса не требуется дополнительного оборудования, поэтому он является экономичным и простым.
Если в установленные сроки нельзя обеспечить набор критической прочности методом термоса, то прибегают к электронагреву. Разделяют три основных способа:
- прогрев электродами
- индукционный нагрев
- использование электронагревательных приборов
Способ прогрева электродами заключается в следующем, в свежеуложенную смесь вводят электроды и подают на них ток. При протекании электрического тока электроды нагреваются и обогревают бетон. Следует отметить, что ток должен быть переменным, т.к. при постоянном токе происходит электролиз воды с выделением газа. Этот газ экранирует поверхность электродов, сопротивление тока возрастает и нагрев существенно снижается. Если в конструкции используется железная арматура, то её можно использовать в качестве одного из электродов. Важно обеспечить равномерность прогрева бетона, и осуществлять контроль температуры. Она не должна превышать 60С.
Расход электроэнергии при данном способе варьируется в пределах 80 – 100 кВт*ч на 1 м3 бетона.
Индукционный прогрев используется редко, в силу сложности реализации. Он основан на принципе бесконтактного нагрева электропроводящих материалов токами высокой частоты. Вокруг стальной арматуры обматывают изолированный провод и пропускают через него ток. В результате появляется индукция и происходит нагрев арматуры.
Расход энергии при индукционном прогреве составляет 120 – 150 кВт*ч на 1 м3 бетона.
Ещё один из способов электронагрева бетона – это применение электронагревательных приборов. Существуют греющие маты, которые раскладываются на поверхности бетона и включаются в сеть. Так же можно соорудить над бетоном подобие палатки и уже внутри поставить электронагревательные приборы, например тепловую пушку. Но в данном случае необходимо позаботиться об удержании влаги в бетоне, не допустить преждевременного высыхания.
При температуре окружающего воздуха -20С расход электроэнергии, при данном методе, будет составлять 100 — 120 кВт*ч на 1 м3 бетона.
Прогрев бетона паром является весьма эффективным и рекомендуется для тонкостенных конструкций. С внутренней стороны опалубки создаются каналы, через которые пропускают пар. Можно сделать двойную опалубку и пропускать пар между её стенками. Так же можно проложить трубы внутри бетона, и пропускать пар по ним. Бетон этим способом нагревают до 50 – 80С. Такая температура и благоприятная влажность ускоряет твердение бетона в несколько раз. Например, за двое суток, при данном методе, бетон набирает такую же прочность как при недельном твердении в нормальных условиях.
Но у этого метода есть существенный недостаток. Требуются внушительные затраты на его организацию.
Ещё одним способом зимнего бетонирования является использование химических ускорителей твердения и противоморозных добавок. К ним относятся хлористые соли, нитрит натрия, карбонат кальция и др. Эти добавки понижают температуру замерзания воды и ускоряют гидратацию цемента. Их использование позволяет обойтись без прогрева бетона. Некоторые добавки повышают морозостойкость бетона, тем самым гидратация происходит даже при -20С.
Использование присадок обладает рядом недостатков. Их наличие в смеси пагубно сказывается на арматуре, начинается процесс коррозии. Поэтому использовать их можно только в неармированной конструкции. Также, при использовании противоморозных добавок, в зимний период, бетон наберёт прочность не более 30%. При наступлении плюсовой температуры произойдет оттаивание и дальнейший процесс набора прочности. Поэтому в бетоне, работающем при динамических нагрузках (фундамент под вибростанки, молоты и т.д.), использовать добавки нельзя.
Наряду с холодом бетон боится жары. Если температура окружающего воздуха превышает 35С и влажность менее 50%, то это способствует повышенному испарению воды из бетонной смеси. В результате водноцементный баланс нарушается и процесс гидратации замедляется или вовсе прекращается. Поэтому необходимо применять определённые меры по защите смеси от потери влаги. Можно понизить температуру свежеприготовленной смеси, если использовать охлаждённую воду, либо разбавить воду льдом. Этот нехитрый способ позволит избежать значительной потери воды при укладке смеси. Но через некоторое время смесь нагреется, поэтому следует позаботиться о дальнейшей герметичности конструкции. Опалубка должна быть герметичной, чтобы избежать потерь влаги через трещины. Впитывающую поверхность опалубки необходимо обработать специальным составом, ограничивающим сцепку с бетоном и поглощение влаги из него.
Необходимо оградить твердеющий бетон от воздействия прямых солнечных лучей. Для этого поверхность бетона укрывают мешковиной или брезентом. Через каждые 3 — 4 часа необходимо производить смачивание поверхности. Причём период увлажнения может достигать 28 суток, т.е. до полного набора прочности.
Одним из способов защиты при дефиците воды является возведение над поверхностью бетонной конструкции воздухонепроницаемого колпака из плёнки ПВХ толщиной не менее 0,2 мм.
При +20С бетон набирает прочность за 28 суток. Бетонная смесь, без использования методов нагрева или охлаждения, твердеет при температуре от +5С до +35С. Но время набора проектной прочности будет разным. Чем выше температура смеси, тем быстрее она твердеет. Для заливки бетона выходящего за рамки указанной температуры, необходимо использовать определённые методы.
При отрицательных температурах надо прибегать к методам нагрева на протяжении всего срока набора критической прочности. Необходимо чтобы нагрев смеси был равномерным, без больших перепадов температуры в центре и на периферии. Так же необходимо осуществлять постоянный контроль за температурой.
Если же температура выше +35С, то необходимо принимать меры по охлаждению смеси в момент приготовления, транспортировки и укладки. Это делается для предотвращения потери воды и, как следствие, нарушению водноцементного баланса, что негативно сказывается на прочности бетонной конструкции. После укладки необходимо либо увлажнять бетон, либо обеспечить герметичность конструкции.
источник
14 Июл 2019 admin 23