Вредные примеси в заполнителях для бетона

Статистический анализ качества минеральных заполнителей, выпускаемых карьерами Ставропольского края и Северного Кавказа, показывает, что объемы выпуска мытого щебня и песка составляют примерно 35–40 %, остальные 60–65 % – это заполнители, содержащие от 3 % до 15 % загрязняющих пылевидных, глинистых и илистых частиц. Стоимость мытых заполнителей на 20–30 % выше немытых.

Современные представления о влиянии качества заполнителей на структуру бетонов, его свойствах и возможностях их регулирования в требуемых направлениях развивались в исследованиях известных ученых И.Н. Ахвердова, В.В. Бабкова, В.И. Бабушкина, Ю.М. Баженова, Г.И. Горчакова, Е.А. Гузеева, В.С. Данюшевского и многих других. Свойства бетонов в достаточной мере зависят от свойств заполнителей, что объясняет повышенные требования к их качественным характеристикам.

Изменения в процессе образования структуры бетонов и их смесей в том числе происходят из-за наличия загрязняющих примесей (частичек пыли, глины, и ила) [1, 2]. В нормативной документации, регламентирующей качественные показатели применяемых заполнителей для бетонов различного назначения, установлены допустимые значения содержания загрязняющих примесей, так как их наличие в значительной степени ухудшает адгезию между цементным камнем и заполнителем [3]. Для бетонов всех классов допустимое количество примесных частиц в щебне не должно превышать 1 % по массе; в песке 2–5 % для бетонов различного назначения [4]. Требования ГОСТ 8736-93 допускают в песке II класса из отсевов дробления наличие пылевидных и глинистых частиц до 10 % по массе [5]. Вообще содержание примесей в виде пылевидных, илистых и глинистых частиц в бетонной смеси может варьироваться в весьма широком диапазоне в зависимости от количества в смеси песка и щебня, что, безусловно, отразится на свойствах бетонных смесей и бетонов. Однако еще в 1928 г. Р. Залигер отмечал, что трудно предъявить исчерпывающие требования к материалам, необходимым для производства бетона. Примесные частицы ила, глины и аналогичные им снижают прочность бетона в особенности, если они контактируют с поверхностью частиц мелкого и крупного заполнителя [6]. А в случае равномерного распределения этих примесей в массе песка и отсутствия сцепления с зернами их наличие не вредит качеству бетонов и даже при общеизвестных обстоятельствах повышает прочность. Ю.М. Баженов [7], В.Г. Батраков [8] и другие ученые – исследователи [9] полагают, что совокупность примесей, «грязнящих» песок, не может полностью охарактеризовать его качество. Вполне допустима вероятность того, что 3–5 % примесей одного состава могут быть многократно вреднее, чем 10–15 % примесей другого состава. Из практики известно, что добавление к цементу глины или глинистых горных пород практически не оказывает влияния на его качество. Общеизвестно, что ранее при изготовлении строительных материалов и изделий различного назначения использовались грунто-бетонные смеси или песчано-грунто-цементные смеси в которых содержание глинистых и илистых веществ доходило до 40–45 % [10]. Последние десятилетия ознаменованы новейшими разработками и приемами увеличения прочности и морозостойкости бетонов за счет внедрения разработанных воздухововлекающих, демпфирующих, пластифицирующих и другого вида добавок. Физико-механические свойства бетонов с указанными добавками в присутствии [7] загрязняющих примесей в заполнителе малоизучены. Без сомнения, нормируемые пределы по количественному содержанию загрязняющих примесей в заполнителях для бетонов могут быть более высокими при каждом конкретном изучении их влияния на [5] качественные показатели бетонов в присутствии добавок [7, 11]. Оказавшиеся в заполнителе глинистые, илистые и пылевидные примеси образуют на поверхности заполнителя монослой, который снижает адгезию цементного камня с заполнителем, а также прочность и морозостойкость бетонов. Обычные расчеты дают возможность утверждать, что при 10 % содержании примесей они могут образовывать поверхностный слой на частичках заполнителя около 8–10 мкм в тонкодисперсных бетонах и 12–14 мкм в обычных бетонах. Конечно, при перемешивании бетонных смесей слои этих частиц в водной среде сдвигаются с поверхности заполнителя, распределяясь в водоцементной части бетонной смеси. Именно это позволит несколько повысить контакт и сцепление цементного камня с поверхностью заполнителя [12]. Наличие загрязняющих частиц может способствовать сохранению достаточно высоких показателей прочности при испытании водонасыщенных бетонов, создавая преграду прониканию воды вверху трещины и ее рост [10]. Соответственно можно предположить, наличие загрязняющие частицы в порах бетонов в случае их взаимодействия с водой будут набухать и тем самым уменьшать водопоглощение бетона. При замораживании адсорбированная на поверхности тонкодисперсных примесей вода превращается в лед при температурах значительно ниже 0 °С, что может повлиять [2] на сохранение морозостойкости и трещиностойкости бетонов.

Цель исследования

Выявление особенностей влияния на свойства бетонной смеси заполнителей, содержащих мелкодисперсные загрязняющие примеси. Исследование воздействия загрязняющих примесей разного гранулометрического состава в заполнителях исследуемых карьеров Ставропольского края на технологические свойства бетонных смесей. Предложение оптимизированного метода подбора состава бетонных смесей на засоренных примесями заполнителях. Обоснование рационального применения суперпластификатора С-3 МУ в бетонах с заполнителями, содержащих илистые и глинистые примеси.

Материалы и методы исследования

Были проведены экспериментальные исследования влияния пылевидных, илистых и глинистых загрязняющих примесей, извлеченных из заполнителей всевозможных карьеров, на технологические свойства бетонных смесей и физико-механические свойства бетонов. В бетонные смеси, состоящие из чистого заполнителя, добавляли в качестве загрязняющих примесей тонкодисперсные (пылевидные, глинистые и илистые) частицы, извлеченные из заполнителей трех карьеров (табл. 1).

Виды загрязняющих примесей заполнителей и их фракционный состав, определенный по ГОСТ Р 50298.2-92, ГОСТ 8735-88, приведены в табл. 1.

Фракционный состав загрязняющих примесей заполнителей

Примечание. *в числителе – частные остатки, в знаменателе – полные остатки на ситах.

Результаты исследования и их обсуждение

Итоги определения жесткости мелкозернистых пластифицированных и непластифицированных бетонных смесей показаны на рис. 1. В бесщебеночных бетонных смесях максимальный разжижающий эффект дает наличие в составе смеси тонкодисперсных загрязняющих примесей Надзорненского карьера. Загрязняющие примеси Старомарьевского и Невинномысского карьеров в количестве от 0 до приблизительно 4 % оказывают пластифицирующее действие, но при дальнейшем увеличении до 10 % их содержание в смеси вызывает повышение жесткости бетонной смеси. Проводя анализ фракционного состава тонкодисперсных фракций загрязняющих примесей заполнителей, можно сделать вывод: пластифицирующее действие оказывают примеси, содержащие большее количество фракций размером более 0,01 мм, а понижают удобоукладываемость смесей примеси, содержащие большее количество фракций размером менее 0,01 мм, что подтверждает предположение, сделанное еще в 1979 г. А.Е. Шейкиным с соавторами [9].

Рис. 1. Зависимость жесткости t мелкозернистого бетона без добавки – а) и с добавкой суперпластификатора С-3 МУ – б) от содержания в смеси загрязняющих примесей Сп Надзорненского карьера – 1; Невинномысского карьера – 2; Старомарьевского карьера – 3

Изучение влияния суперпластификатора С-3МУ [13] на бетонную смесь свидетельствует об улучшении удобоукладываемости смесей даже при наличии в них загрязняющих примесей Невинномысского карьера до 8 % (13,6 % по отношению к заполнителю) по сравнению с контрольным составом без добавки на чистом заполнителе.

При введении тонкодисперсных загрязняющих примесей в тяжелую бетонную смесь их удобоукладываемость, оцениваемая по осадке конуса (ОК), ухудшается, однако примеси различного зернового состава поразному влияют на изменение осадки конуса. Содержание примесей Старомарьевского карьера в количестве 1 % в бетонной смеси приводит к снижению ОК до 0, тогда как на чистом заполнителе ОК была равной 4 см. В то же время снижение ОК до 0 в бетонной смеси с примесями Надзорненского карьера наблюдается при их содержании в смеси в количестве 2,1 % (рис. 1 и 2).

Изменение жесткости бетонных смесей в зависимости от содержания загрязняющих примесей различного зернового состава показывает интересные закономерности, которые не фиксируются ОК (рис. 3) [3]. По мере повышения в бетонных смесях содержания загрязняющих примесей Надзорненского карьера (до 8 %) жесткость понижается. В то же время жесткость бетонных смесей с примесями Невинномысского и Старомарьевского карьеров сначала понижается, а затем при достижении содержания этих примесей в количестве 3–4 % начинает возрастать, и при содержании примесей 6–8 % жесткость достигает значений жесткости бетонной смеси на чистом заполнителе (рис. 2, а). В бетонных смесях с суперпластификатором С-3 МУ при общем повышении подвижности бетонных смесей соблюдаются аналогичные закономерности (рис. 2, б).

Рис. 2. Зависимость жесткости t (—) и осадки конуса ОК (- — -) тяжелых бетонных смесей без пластификатора – а) и с суперпластификатором – б) от содержания в смеси загрязняющих примесей Сп Надзорненского карьера – 1; Невинномысского карьера – 2; Старомарьевского карьера – 3

В итоге проведенные исследования позволяют утверждать, что, подбирая состав бетонных смесей с использованием заполнителей, содержащих загрязняющие примеси, удобоукладываемость необходимо характеризовать не только по осадке конуса, но и по ее жесткости. Наличие тонкодисперсных загрязняющих примесей повышает водопотребность бетонной смеси при ее оценке по осадке конуса, а при оценке удобоукладываемости бетонной смеси по ее жесткости водопотребность может быть снижена (графики рис. 2). Как видно, в бесщебеночных бетонных смесях, так же как и в обычных тяжелых, тонкодисперсные частицы оказывают незначительное пластифицирующее действие на бетонную смесь [14] при оценке удобоукладываемости по жесткости бетонной смеси, как с введением пластификатора, так и без него (рис. 1 и 2). Наличие в заполнителях и в целом в мелкозернистой бетонной смеси загрязняющих частиц Надзорненского карьера до 8 % приводит к увеличению прочности на растяжение при изгибе бетона и прочности при сжатии, как для бетонов с добавками, так и с суперпластификатором С-3 МУ (табл. 1). Это можно объяснить тем, что бетонная смесь с пылевидными глинистыми и илистыми включениями этого карьера обладает меньшей водопотребностью и лучшей уплотняемостью. Присутствие в мелкозернистой бетонной смеси тонкодисперсных (пылевидных, глинистых и илистых) частиц Невинномысского карьера до 6 % приводит к повышению прочности на растяжение при изгибе и прочности при сжатии бетона, как образцов без добавки, так и с суперпластификатором С-3 МУ. Это можно объяснить пластифицирующим действием загрязняющих частиц в заполнителе этого карьера при их содержании в бетонной смеси до 6 %. Присутствие в мелкозернистой бетонной смеси тонкодисперсных загрязняющих частиц Старомарьевского карьера в количестве приблизительно 3 % приводит к повышению предела прочности на растяжение при изгибе и предела прочности при сжатии бетона, как образцов без добавки, так и с суперпластификатором С-3 МУ [5]. Объясняется это пластифицирующим действием загрязняющих частиц в заполнителе этого карьера при их введении в бетонную смесь в количестве до 3 % (табл. 1).

Согласно физико-химической теории бетонных смесей в цементном тесте, представляющем собой структурированную систему, в которой дисперсионной средой является коллоидный цементный клей, образованный водой и частичками коллоидных размеров – осколками цементного клинкера и частиц кристаллизующихся новообразований, а дисперсной фазой – крупные зерна цемента и заполнителя, при наличии загрязняющих тонкодисперсных примесей может меняться соотношение дисперсная фаза – дисперсионная среда. Следствием этого является изменение степени структурированности системы. Структурированные системы характеризуются переменной вязкостью, резко падающей при возрастании градиента скорости (скорости сдвига). При малых градиентах скорости, при которых структура цементного теста почти не разрушается, вязкость такой системы предельно высока [5]. Это характерно при определении осадки конуса бетонных смесей, когда сдвиг происходит под действием собственного веса смеси при чрезвычайно малой скорости сдвига [4]. Определение жесткости бетонной смеси производится при вибрационном воздействии, то есть при гораздо большей скорости сдвига, чем при определении осадки конуса. Соответственно, жесткость бетонных смесей, содержащих тонкодисперсные загрязняющие примеси, и является более чувствительным и теоретически обоснованным критерием удобоукладываемости таких смесей.

Таким образом, при наличии в заполнителях бетонных смесей загрязняющих примесей (пылевидных, глинистых и илистых), подбор составов бетонных смесей следует производить не только по осадке конуса, но и по их жесткости, так как загрязняющие мелкодисперсные примеси изменяют реологическое состояние и технологические свойства смесей [15]. Находящиеся в порах и микрокапиллярах бетона пылевидные и глинистые частицы при их увлажнении и набухании снижают водопоглощение бетона [16]. При замораживании вода, адсорбированная на поверхности частиц мелкодисперсных примесей, превращается в лед при температуре значительно ниже 0 °С, что может способствовать повышению морозостойкости и трещиностойкости бетонов. Это хорошо подтверждается графиками рис. 3, откуда следует, что морозостойкость мелкозернистых бетонов возрастает по мере повышения до 6 % в бетонной смеси содержания загрязняющих примесей Надзорненского и Невинномысского карьеров и практически остается неизменной при этом количестве примесей Старомарьевского карьера. Присутствие в заполнителях загрязняющих примесей Старомарьевского карьера приводит к естественному понижению прочности при сжатии тяжелого бетона, так как эта бетонная смесь обладает наибольшей водопотребностью, что проявляется в повышенной пористости бетонных образцов. Причем обращает на себя внимание тот факт, что морозостойкость бетонов возрастает по мере увеличения в них содержания пылевидных и глинистых частиц [4] Надзорненского и Невинномысского карьеров до 7,5 %, в то же время введение суперпластификатора С-3 МУ значительно повышает морозостойкость бетонов с примесями глинистых и пылевидных частиц в целом и имеет максимальное значение при содержании пылевидных и глинистых частиц Надзорненского и Невинномысского карьеров в смеси 4,5–6,0 %. При этом же содержании примесей наблюдается и максимум прочности при сжатии и растяжении при изгибе непластифицированных и пластифицированных образцов бетонов (табл. 2).

Рис. 3. Зависимость морозостойкости F мелкозернистого бетона от содержания загрязняющих примесей в смеси Сп Надзорненского карьера – 1; Невинномысского карьера – 2; Старомарьевского карьера – 3: а) без пластификатора; б) с суперпластификатором С-3МУ

Влияние загрязняющих примесей на свойства мелкозернистых бетонных смесей и бетонов

источник

БЕТОНЫ ТЯЖЕЛЫЕ И МЕЛКОЗЕРНИСТЫЕ

Heavy-weight and sand concretes. Specifications

____________________________________________________________________
Текст Сравнения ГОСТ 26633-2012 с ГОСТ 26633-91 см. по ссылке.
Текст Сравнения ГОСТ 26633-2015 с ГОСТ 26633-2012 см. по ссылке.
— Примечание изготовителя базы данных.
____________________________________________________________________

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона им.А.А.Гвоздева (НИИЖБ), отделением ОАО «НИЦ «Строительство»

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (МНТКС) (протокол от 18 декабря 2012 г. N 41)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа государственного управления строительством

Государственный комитет градостроительства и архитектуры

Агентство по делам строительства и жилищно-коммунального хозяйства

Министерство строительства и регионального развития

Министерство регионального развития

Агентство по строительству и архитектуре при Правительстве

4 В настоящем стандарте учтены основные положения европейского регионального стандарта EN 206-1:2000* Concrete — Part 1: Specification, performance, production and conformity (Бетон — Часть 1: Общие технические требования, эксплуатационные характеристики, производство и критерии соответствия) в части требований к бетонам.
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru. — Примечание изготовителя базы данных.

Читайте также:  Как сделать вазу из бетона тряпки и ведра

Перевод с английского языка (en).

Степень соответствия — неэквивалентная (NEQ)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 1975-ст межгосударственный стандарт ГОСТ 26633-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

6 ВЗАМЕН ГОСТ 26633-91

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологи в сети Интернет

Настоящий стандарт распространяется на тяжелые и мелкозернистые бетоны на цементных вяжущих (далее — бетоны), применяемые во всех областях строительства, и устанавливает технические требования к бетонам, правила их приемки, методы испытаний.

Стандарт не распространяется на крупнопористые, химически стойкие, жаростойкие и радиационно-защитные бетоны.

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 4.212-80 Система показателей качества продукции. Строительство. Бетоны. Номенклатура показателей

ГОСТ 5578-94 Щебень и песок из шлаков черной и цветной металлургии для бетонов. Технические условия

ГОСТ 7473-2010 Смеси бетонные. Технические условия

ГОСТ 8267-93 Щебень и гравий из плотных горных пород для строительных работ. Технические условия

ГОСТ 8269.0-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

ГОСТ 8269.1-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы химического анализа

ГОСТ 8735-88 Песок для строительных работ. Методы испытаний

ГОСТ 8736-93 Песок для строительных работ. Технические условия

ГОСТ 10060-2012 Бетоны. Методы определения морозостойкости

ГОСТ 10178-85 Портландцемент и шлакопортландцемент. Технические условия

ГОСТ 10180-2012 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 12730.1-78 Бетоны. Метод определения плотности

ГОСТ 12730.2-78 Бетоны. Метод определения влажности

ГОСТ 12730.3-78 Бетоны. Метод определения водопоглощения

ГОСТ 12730.4-78 Бетоны. Методы определения показателей пористости

ГОСТ 12730.5-84 Бетоны. Методы определения водонепроницаемости

ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения

ГОСТ 13087-81 Бетоны. Методы определения истираемости

ГОСТ 17623-87 Бетоны. Радиоизотопный метод определения средней плотности

ГОСТ 17624-2012 Бетоны. Ультразвуковой метод определения прочности

ГОСТ 18105-2010 Бетоны. Правила контроля и оценки прочности

ГОСТ 21718-84 Материалы строительные. Диэлькометрический метод измерения влажности

ГОСТ 22266-94 Цементы сульфатостойкие. Технические условия

ГОСТ 22690-88 Бетоны. Определение прочности механическими методами неразрушающего контроля

ГОСТ 22783-77 Бетоны. Метод ускоренного определения прочности на сжатие

ГОСТ 23422-87 Материалы строительные. Нейтронный метод измерения влажности

ГОСТ 23732-2011 Вода для бетонов и строительных растворов. Технические условия

ГОСТ 24211-2008 Добавки для бетонов и строительных растворов. Общие технические условия

ГОСТ 24316-80 Бетоны. Метод определения тепловыделения при твердении

ГОСТ 24452-80 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона

ГОСТ 24544-81 Бетоны. Методы определения деформаций усадки и ползучести

ГОСТ 24545-81 Бетоны. Методы испытаний на выносливость

ГОСТ 25592-91 Смеси золошлаковые тепловых электростанций для бетонов. Технические условия

ГОСТ 25818-91 Золы-уноса тепловых электростанций для бетонов. Технические условия

ГОСТ 26644-85 Щебень и песок из шлаков тепловых электростанций для бетона. Технические условия

ГОСТ 27006-86 Бетоны. Правила подбора состава

ГОСТ 27677-88 Защита от коррозии в строительстве. Бетоны. Общие требования к проведению испытаний

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

ГОСТ 29167-91 Бетоны. Методы определения характеристик трещиностойкости (вязкости разрушения) при статическом нагружении

ГОСТ 30108-94 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов

ГОСТ 30459-2008 Добавки для бетонов и строительных растворов. Определение и оценка эффективности

ГОСТ 31108-2003 Цементы общестроительные. Технические условия

ГОСТ 31383-2008 Защита бетонных и железобетонных конструкций от коррозии. Методы испытаний

ГОСТ 31384-2008 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования

ГОСТ 31424-2010 Материалы строительные нерудные из отсевов дробления плотных горных пород при производстве щебня. Технические условия

ГОСТ 31914 Бетоны высокопрочные тяжелые и мелкозернистые для монолитных конструкций. Правила контроля и оценки

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3.1 Требования настоящего стандарта следует соблюдать при разработке новых и пересмотре действующих стандартов и технических условий, проектной и технологической документации на сборные бетонные и железобетонные изделия (далее — изделия) и монолитные конструкции (далее — конструкции).

3.2 Бетоны следует изготовлять в соответствии с требованиями настоящего стандарта, а также с требованиями проектной и технологической документации, стандартов и технических условий на конструкции и изделия конкретных видов, утвержденных в установленном порядке.

3.3.2 Классы бетона по прочности, марки по морозостойкости, водонепроницаемости и истираемости бетонов в конструкциях и изделиях конкретных видов устанавливают в соответствии с нормами проектирования и указывают в стандартах, технических условиях, проектной и технологической документации на конструкции и изделия.

3.3.3 В зависимости от условий работы бетона в различных средах эксплуатации в стандартах и технических условиях на изделия и рабочих чертежах бетонных и железобетонных конструкций следует устанавливать дополнительные требования к качеству бетонов по нормируемым показателям качества, предусмотренным ГОСТ 4.212.

3.3.4 Технические требования к бетону, установленные в соответствии с 3.3.1, должны быть обеспечены изготовителем конструкций и изделий в проектном возрасте, который указывают в проектной документации и назначают в соответствии с нормами проектирования в зависимости от условий твердения бетона, способов возведения и сроков фактического загружения этих конструкций и изделий. Если проектный возраст не указан, технические требования к бетону должны быть обеспечены в возрасте 28 сут.

Значения нормируемых показателей отпускной и передаточной (для предварительно напряженных изделий) прочностей бетона устанавливают в проекте конкретного изделия и указывают в стандарте или технических условиях на это изделие.

Нормируемые значения прочности бетона монолитных конструкций в промежуточном возрасте (после снятия несущей опалубки и др.) устанавливают в технологической документации (проекте производства работ или технологическом регламенте).

3.3.5 Общее содержание хлоридов в бетоне (в пересчете на ион ) не должно превышать:

1% массы в неармированном бетоне;

0,4% массы в бетоне с ненапрягаемой арматурой;

0,1% массы в бетоне с напрягаемой арматурой.

3.3.6 В период изготовления изделий и конструкций, а также строительства и эксплуатации зданий и сооружений из бетона не должны выделяться во внешнюю среду вредные вещества в количествах, превышающих действующие санитарно-гигиенические нормы [1], [2].

3.3.7 Минимальный расход цемента в бетонах, эксплуатируемых в неагрессивных средах, в зависимости от вида конструкций и условий их эксплуатации должен соответствовать приведенному в таблице 1.

Таблица 1 — Минимальный расход цемента в бетонах, эксплуатируемых в неагрессивных средах

источник

Вопрос 18 Заполнители для бетона (песок, щебень, гравий). Основные требования к качеству. Особенности применения

Бетон на неорганических вяжущих веществах представляет собой композиционный материал, получаемый в результате формования и твердения рационально подобранной бетонной смеси, состоящей из вяжущего вещества, воды, заполнителей и специальных добавок.

В правильно подобранной бетонной смеси расход цемента составляет 8-15%, а заполнителей — 80-85% (по массе). Поэтому в виде заполнителей применяют местные каменные материалы: песок, гравии, щебень, а также побочные продукты промышленности (например, дробленные и гранулированные металлургические шлаки), характеризующиеся сравнительно невысоким уровнем издержек производства.

Цемент. Для тяжелого бетона применяют портландцемент и его разновидности, а также глиноземистый цемент и другие вяжущие, отвечающие требованиям соответствующих ГОСТов. Марку цемента назначают в зависимости от проектной марки бетона по прочности при сжатии. Если марка цемента выше той, которая рекомендуется для данного бетона, то надо разбавить высокоактивный цемент тонкомолотой активной добавкой, чтобы избежать перерасхода высокомарочного цемента.

Мелкий заполнитель. В качестве мелкого заполнителя в тяжелом бетоне применяют песок, состоящий из зерен размером 0,16-5 мм и имеющий плотность более 1,8 г/см 3 . Для приготовления тяжелых бетонов применяют природные пески, образовавшиеся в результате естественного разрушения горных пород, а также искусственные, полученные путем дробления твердых горных пород и из отсевов. Природные пески представляют рыхлую смесь зерен различных минералов, входивших в состав изверженных (реже осадочных) горных пород (кварца, полевого шпата, кальцита, слюды и др.)

Качество песка, применяемого для изготовления бетона, определяется минеральным составом, зерновым составом и содержанием вредных примесей. Заполнитель должен состоять из зерен разного размера (разных фракций), при этом количество крупных, средних и мелких зерен (т.е. зерновой состав заполнителя) устанавливается на основе проверенных рекомендаций таким образом, чтобы зерна меньшего размера располагались в пустотах между крупными. Чем компактнее расположены зерна заполнителей, тем меньше объем пустот.

Зерновой (гранулометрический) состав песка определяют просеиванием высушенной средней пробы (1000 г) через стандартный набор сит с размерами отверстий 5; 2,5; 1,25; 0,63; 0,315; 0,16 мм. Мелкие частицы песка (пыль) имеют размер менее 0,16 мм. В песке зерен гравия от 5 до 10 мм допускается не более 5%, зерен крупнее 10 мм — не должно быть. Сначала вычисляют частный остаток на каждом сите (%), как отношение массы остатка к массе просеиваемой пробы. Затем определяют полный остаток (%) на каждом сите как сумму частных остатков на данном сите и на всех ситах крупнее данного. В зависимости от зернового состава песок разделяют на крупный, средний, мелкий.

Мелкие частицы (пыль, ил, глина) увеличивают водопотребность бетонных смесей и расход цемента в бетоне. Поэтому содержание в песке зерен, проходящих через сито 0,16 мм, должно быть не более 10% по массе, при этом количество пылевидных, илистых и глинистых частиц, определяемых отмучиванием, не должно превышать 3%. Глина набухает при увлажнении и увеличиваете объеме при замерзании, снижая морозостойкость. Поэтому содержание глины в песке строго ограничивается, тем более не должно быть комков глины и суглинка. Песок очищают от мелких частиц путем промывки.

В природном песке и в гравии могут содержаться органические примеси (например, продукты разложения остатков растений), в частности, органические гумусовые кислоты, которые понижают прочность бетона и даже разрушают цемент. Наличие органических примесей определяют калориметрическим (цветовым) методом. Песок считают пригодным для бетона, если жидкость — 3%-ный раствор NаОН над песком — не окрашивается или приобретает окраску светлее эталона (эталон имеет светло-желтый цвет).

Песок отличается от крупного заполнителя способностью сильно изменять плотность и объем при изменении влажности от 0 до 25%, что учитывается при объемной дозировке (при приготовлении растворных и бетонных смесей) и приемке песка.

Крупный заполнитель. В качестве крупного заполнителя для бетона применяют гравий, щебень с размером зерен 5-70 мм. При бетонировании массивных конструкций можно применять щебень крупностью до 150 мм. Зерна гравия имеют окатанную форму и гладкую поверхность. Обычно гравий содержит в том или ином количестве песок, а также вредные примеси — глину, пыль, слюду, гумусовые вещества (органические примеси). Щебень получают дроблением изверженных, метаморфических, плотных и водостойких осадочных горных пород (плотных известняков, песчаников и др.). Зерна щебня имеют угловатую форму; желательно, чтобы по форме они приближались к кубу. Более шероховатая, чем у гравия, поверхность зерен способствует лучшему их сцеплению с цементным камнем, поэтому для бетонов высокой прочности (М500 и выше) обычно применяют щебенки не гравий.

Качество крупного заполнителя определяется минеральным составом и свойствами исходной породы (ее прочностью и морозстойкостью), зерновым составом заполнителя, формой зерен и содержанием вредных примесей. Прочность исходной породы при сжатии в насыщенном водой состоянии должна не менее чем в 1,5-2 раза превышает марку бетона.

В районах с развитой металлургической промышленностью экономически выгодно применять щебень, полученный в результате дробления и рассева тяжелых отвальных или специально от литых доменных и мартеновских шлаков. Щебень из шлака должен иметь устойчивую структуру, удовлетворять общим требованиям в отношении зернового состава. Не допускаются в нем посторонние примеси топливных шлаков и зол, колошниковой пыли и т.д.

Морозостойкость щебня и гравия должна обеспечивать получение проектной марки бетона по морозостойкости. Установлены марки щебня и гравия по морозостойкости от 15 до 300. Марка обозначает число циклов попеременного замораживания и оттаивания, при котором потеря в массе пробы крупного заполните не превышает 5% (для марок 15 и 25 допускается, потеря массы 10%).

Зерновой состав крупного заполнителя устанавливают с учетом наибольшего D и наименьшего d размеров зерен щебня или гравия. Наибольший размер зерен при бетонировании железа бетонных балок, колони, рам должен быть не более 3/4 наименьшего расстояния между стержнями арматуры; а для плит перекрытий и покрытий — не более 1/2 толщины плиты.

Наименьшая крупность соответствует размеру отверстия самого мелкого из сит, через которое проходит не более 5% просеиваемой пробы; обычно наименьшая крупность равна 5(3) мм.

В зависимости от крупности зерен щебень, гравий подразделяют на четыре фракции: 5-10 мм, 10-20 мм, 20-40 мм и 40-70 мм. Щебень, гравий могут поступать в виде смеси двух или большего числа фракций. По соглашению между поставщиком и потребителем может применятся щебень фракций 3-10 мм, 10-15мм (или 5-15), 15-20 мм. Зерновой состав каждой фракции или смеси фракций должен находится в указанных ниже пределах.

В зависимости от формы зерен устанавливается три группы щебня из естественно камня: кубовидная, улучшенная и обычная. Содержание зерен пластинчатой (лещадной) и игловатой формы в них не превышает соответственно 15, 25 и 35% по массе. К пластинчатым и игловатым зернам относят такие, в которых толщина или ширина меньше длины в 3 и более раза.

Содержание пылевидных и илистых частиц допускается в зависимости от вида исходной горной породы и марки щебня и гравия по прочности. Количество пылевидных, глинистых и илистых частиц, определяемое отмучиванием, в гравии и щебне допускается не более 1%. Содержание органических примесей в крупном заполнителе проверяют, пользуясь той же методикой, которая применяется для песка. Гравий и щебень при обработке водным раствором едкого натра не должны придавать раствору окраску темнее эталона.

Читайте также:  Инструмент для вырезания отверстий в бетоне

Радиационно-гигиеническая оценка мелкого и крупного заполнителя должна проверяться постоянно на содержание естественных радионуклеидов.

Водопотребность является важной технологической характеристикой заполнителя Зерна заполнителя поглощают воду и адсорбируют ее на своей поверхности, поэтому необходимо регулировать количества воды затворения с учетам «смачивания» заполнителя, чтобы получить нужную удобоукладываемость бетонной смеси.

Вода, применяемая для затворения бетонной смеси и поливки бетона, не должна содержать вредных примесей, препятствуют схватыванию и твердению вяжущего вещества. Для затворения бетонной смеси применяют водопроводную питьевую воду, а так же природную воду (рек, естественных водоемов), имеющих водородный показатель рН не менее 4, содержащую не более 5000 мг/л минеральных солей, в том числе сульфатов не бои 2700 мг/л (в пересчете на S03). Не допускается применять болотные, а также сточные бытовые и промышленные воды без очистки.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

ГОСТ 26633-91

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ
ТЯЖЕЛЫЕ И МЕЛКОЗЕРНИСТЫЕ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Москва Стандартинформ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ ТЯЖЕЛЫЕ И МЕЛКОЗЕРНИСТЫЕ Технические условия Heavy-weight and sand concretes. Specifications ГОСТ 26633-91

Дата введения 01.01.92

Настоящий стандарт распространяется на конструкционные тяжелые и мелкозернистые бетоны (далее — бетоны), применяемые по всех видах строительства.

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Требования настоящего стандарта следует соблюдать при разработке новых, и пересмотре действующих стандартов и технических условий, проектной и технологической документации на сборные бетонные и железобетонные изделия и конструкции заводского изготовления, монолитные и сборно-монолитные сооружения (далее — конструкции).

1.2. Бетоны следует изготавливать в соответствии с требованиями настоящего стандарта по проектной и технологической документации на конструкции конкретных видов, утвержденной в установленном порядке.

Характеристики

1.3.1. Требования к бетону установлены в соответствии с ГОСТ 25192 и международным стандартом ИСО 3893.

* На территории Российской Федерации действуют СНиП 52-01-2003 (здесь и далее).

(Измененная редакция, Изм. № 2).

1.3.2. Прочность бетона в проектном возрасте характеризуют классами прочности на сжатие, осевое растяжение, растяжение при изгибе.

Для бетонов установлены следующие классы:

— по прочности на сжатие: В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В35; В40; В45; В50; В55; В60; В65; В70; В75; В80.

Примечание. Допускается применение бетона промежуточных классов по прочности на сжатие В22,5 и В27,5;

1. Для бетона конструкций, запроектированных до ввода в действие СТ СЭВ 1406 (при нормировании прочности по маркам), установлены следующие марки:

— по прочности на сжатие: М50; М75; M100; M150; М200; М250; M300; М350; М400; М450; М500; М550; М600; М700; М800; М900; М1000;

2. Соотношение между классами и марками бетона по прочности на растяжение и сжатие при нормативном коэффициенте вариации 13,5 %, а для массивных гидротехнических конструкций — 17,0 % приведено в приложении 1.

1.3.3. Для бетонов конструкций, подвергающихся в процессе эксплуатации попеременному замораживанию и оттаиванию, назначают следующие марки бетона по морозостойкости: F50; F75; F100; F150; F200; F300; F400; F500; F600; F800; F1000.

1.3.4. Для бетонов конструкций, к которым предъявляются требования ограничения проницаемости или повышенной плотности и коррозионной стойкости, назначают марки по водонепроницаемости. Установлены следующие марки по водонепроницаемости: W2; W4; W6; W8; W10; W12; W14; W16; W18; W20.

1.3.5. Классы бетона по прочности, марки по морозостойкости и водонепроницаемости бетонов в конструкциях конкретных видов устанавливают в соответствии с нормами проектирования указывают в стандартах, технических условиях и в проектной документации на эти конструкции.

1.3.6. В зависимости от условий работы бетона, в стандартах или технических условиях и рабочих чертежах бетонных и железобетонных конструкций следует устанавливать дополнительные требования к качеству бетонов, предусмотренные ГОСТ 4.212.

1.3.7. Технические требования к бетону, установленные в пп. 1.3.1 — 1.3.6, должны быть обеспечены изготовителем конструкции в проектном возрасте, который указывают в проектной документации на эти конструкции и назначают в соответствии с нормами проектирования в зависимости от условий твердения бетона, способов возведения и сроков фактического загружения этих конструкций. Если проектный возраст не указан, технические требования к бетону должны быть обеспечены в возрасте 28 сут.

1.3.7а. Значения нормируемых отпускной, передаточной (для преднапряженных конструкций) прочности бетона устанавливают в проекте конкретной конструкции и указывают их в стандарте или технических условиях на эту конструкцию.

(Введен дополнительно, Изм. № 1).

1.3.8. Удельная эффективная активность естественных радионуклидов (Аэфф) сырьевых материалов, применяемых для приготовления бетонов, не должна превышать предельных значений в зависимости от области применения бетонов по приложению А ГОСТ 30108.

(Измененная редакция, Изм. № 1).

Требования к бетонным смесям

1.4.1. Бетонные смеси должны соответствовать требованиям ГОСТ 7473.

1.4.2. Состав бетона подбирают по ГОСТ 27006.

При выборе материалов для подбора состава бетона следует производить радиационно-гигиеническую оценку этих материалов.

1.4.1, 1.4.2. (Измененная редакция, Изм. № 1).

1.4.3. Для дорожных и аэродромных покрытий из тяжелого и мелкозернистого бетона водоцементное отношение назначается в зависимости от удобоукладываемости бетонной смеси по ГОСТ 7473 и должно быть не более указанных в табл. 1а.

Конструктивный слой покрытия Бетонные смеси по ГОСТ 7473 Водоцементное отношение для бетона
тяжелого мелкозернистого
Однослойные покрытия и верхний слой двухслойных покрытий Подвижные 0,45 0,45
Жесткие 0,35 0,45
Нижний слой двухслойных покрытий Подвижные 0,60 0,60
Жесткие 0,40 0,60

1.4.4. Для дорожных и аэродромных покрытий из тяжелого и мелкозернистого бетона объем вовлеченного воздуха в подвижной бетонной смеси и содержание условно закрытых пор в бетоне из этой смеси должны быть не менее значений, указанных в табл. 1.

Конструктивный слой покрытия Объем вовлеченного воздуха в бетонной смеси, % Содержание условно закрытых пор в бетоне, %
Однослойные и верхний слой двухслойных покрытий 3,5
Нижний слой двухслойных покрытий 3,5 2,0

1.4.3, 1.4.4.(Новая редакция, Изм. № 2).

1.4.5. Для гидротехнических сооружений с нормированной морозостойкостью F200 и выше, эксплуатируемых в условиях насыщения морской или минерализированной водой, объем вовлеченного воздуха в бетонной смеси должен соответствовать указанному в табл. 2.

Максимальная крупность заполнителя, мм Объем вовлеченного воздуха в бетонной смеси, %, при В/Ц
Менее 3,41 0,41 — 0,50 Более 0,50
2 — 4 3 — 5 5 — 7
1 — 3 2 — 4 4 — 6
1 — 3 3 — 5
2 — 4

1.4.6. Объем вовлеченного воздуха в бетонных смесях для бетонов мостовых конструкций с нормированной морозостойкостью принимают по стандартам и техническим условиям на бетон конструкции конкретного вида; он не должен превышать, %:

2 — 5 — для мостовых бетонных и железобетонных конструкций;

5 — 6 — для покрытий проезжей части мостов.

1.4.7. Минимальный расход цементов по ГОСТ 10178 и ГОСТ 22266 принимают в соответствии с табл. 3 в зависимости от вида конструкций и условий их эксплуатации.

Вид конструкции Условия эксплуатации Вид и расход цементов, кг/м 3
ПЦ-Д0, ПЦ-Д5 ССПЦ-Д0 ПЦ-Д20 ССПЦ-Д20 ШПЦ, ССШПЦ, ПуццПЦ
Неармированные Без атмосферных воздействий Не нормируют
При атмосферных воздействиях
Армированные с ненапрягаемой арматурой Без атмосферных воздействий
При атмосферных воздействиях
Армированные с преднапряженной арматурой Без атмосферных воздействий
При атмосферных воздействиях

1. Допускается изготовление армированных бетонов с расходом цемента менее минимально допустимого при условии предварительной проверки обеспечения защитных свойств бетона по отношению к стальной арматуре.

2. Минимальный расход цемента других видов устанавливают на основании результатов оценки защитных свойств бетона на этих цементах по отношению к стальной арматуре.

3. Минимальный расход цемента для бетонов конструкций, эксплуатирующихся в агрессивных средах, определяют с учетом требований СНиП 2.03.11.

Требования к вяжущим материалам

1.5.1. В качестве вяжущих материалов следует применять портландцементы и шлакопортландцементы по ГОСТ 10178, сульфатостойкие и пуццолановые цементы по ГОСТ 22266 и другие цементы по стандартам и техническим условиям в соответствии с областями их применения для конструкций конкретных видов.

1.5.2. Вид и марку цемента следует выбирать в соответствии с назначением конструкций и условиями их эксплуатации, требуемого класса бетона по прочности, марок по морозостойкости и водонепроницаемости, величины отпускной или передаточной прочности бетона для сборных конструкций на основании требований стандартов, технических условий или проектной документации на эти конструкции с учетом требований ГОСТ 30515, а также воздействия вредных примесей в заполнителях на бетон (см. приложение 2).

Применение пуццолановых цементов для производства сборных железобетонных конструкций без технико-экономического обоснования не допускается.

1.5.3. Для производства сборных конструкций, подвергаемых тепловой обработке, следует применять, цементы I и II групп эффективности при пропаривании по ГОСТ 10178. Применение цементов III группы допускается при согласовании со специализированными научно-исследовательскими институтами, технико-экономическом обосновании и согласии потребителя.

1.5.2, 1.5.3.(Измененная редакция, Изм. № 1).

1.5.4. Для бетона дорожных и аэродромных покрытий, дымовых и вентиляционных труб, вентиляторных и башенных градирен, опор высоковольтных линий электропередач, железобетонных напорных и безнапорных труб, железобетонных шпал, мостовых конструкций, стоек опор, свай для вечномерзлых грунтов должен применяться портландцемент на основе клинкера с нормированным минералогическим составом по ГОСТ 10178.

Для бетона дорожных оснований допускается применение шлакопортландцемента по ГОСТ 10178.

1.5.5. (Исключен, Изм. № 1).

Требования к заполнителям

1.6.1. В качестве крупных заполнителей для тяжелых бетонов используют щебень и гравий из плотных горных пород по ГОСТ 8267, щебень из доменных и ферросплавных шлаков черной металлургии и никелевых и медеплавильных шлаков цветной металлургии по ГОСТ 5578, а также щебень из шлаков ТЭЦ по ГОСТ 26644.

В качестве мелких заполнителей для бетонов используют природный песок и песок из отсевов дробления горных пород со средней плотностью зерен от 2000 до 2800 г/см 3 и их смеси, удовлетворяющие требованиям ГОСТ 8736, песок из доменных и ферросплавных шлаков черной металлургии и никелевых и медеплавильных шлаков цветной металлургии по ГОСТ 5578, а также золошлаковые смеси по ГОСТ 25592.

(Измененная редакция, Изм. № 1).

1.6.2. В случае необходимости применения заполнителей с показателями качества ниже требований государственных стандартов, приведенных в п. 1.6.1, а также требований настоящего стандарта, предварительно должно быть проведено их исследование в бетонах в специализированных центрах для подтверждения возможности и технико-экономической целесообразности получения бетонов с нормируемыми показателями качества.

1.6.3. Крупный заполнитель в зависимости от предъявляемых к бетону требований выбирают по следующим показателям: зерновому составу и наибольшей крупности, содержанию пылевидных и глинистых частиц, вредных примесей, форме зерен, прочности, содержанию зерен слабых пород, петрографическому составу и радиационно-гигиенической характеристике. При подборе состава бетона учитывают также плотность, пористость, водопоглощение, пустотность. Крупные заполнители должны иметь среднюю плотность зерен от 2000 до 3000 кг/м 3 .

(Измененная редакция, Изм. № 1).

1.6.4. Крупный заполнитель следует применять в виде раздельно дозируемых фракций при приготовлении бетонной смеси. Наибольшая крупность заполнителя должна быть установлена в стандартах, технических условиях или рабочих чертежах бетонных и железобетонных конструкций. Перечень фракций в зависимости от наибольшей крупности зерен заполнителя указан в табл. 4.

Наибольшая крупность зерен Фракция крупного заполнителя
От 5 до 10 или от 3 до 10
От 5 ( 3) до 10 и св. 10 до 20
От 5 (3) до 10, св. 10 до 20 и св. 20 до 40
От 5 (3) до 10, св. 10 до 20, св. 20 до 40 и св. 40 до 80
От 5 (3) до 10, св. 10 до 20, св. 20 до 40, св. 40 до 80, св. 80 до 120

Примечание. Применение фракции заполнителя с крупностью зерен от 3 до 10 мм допускается в случае использования в качестве мелкого заполнителя песков с модулем крупности не более 2,5.

Допускается применение крупных заполнителей в виде смеси двух смежных фракций, отвечающих требованиям табл. 4.

1.6.5. Содержание отдельных фракций в крупном заполнителе в составе бетона должно соответствовать указанному в табл. 5.

Наибольшая крупность заполнителя, мм Содержание фракций в крупном заполнителе, %
от 5 (3) до 10 мм св. 10 до 20 мм св. 20 до 40 мм св. 40 до 80 мм св. 80 до 120 мм
25 — 40 60 — 75
15 — 25 20 — 35 40 — 65
10 — 20 15 — 25 20 — 35 35 — 55
5 — 10 10 — 20 15 — 25 20 — 30 30 — 40

1.6.6. Содержание пылевидных и глинистых частиц в щебне из изверженных и метаморфических пород, щебне из гравия и в гравии не должно превышать для бетонов всех классов 1 % по массе.

Содержание пылевидных и глинистых частиц в щебне из осадочных пород не должно превышать для бетонов класса В22,5 и выше — 2 % по массе; класса В20 и ниже — 3 % по массе.

1.6.7. Содержание зерен пластинчатой (лещадной) и игловатой формы в крупном заполнителе не должно превышать 35 % по массе.

1.6.8. Марка щебня из изверженных пород должна быть не ниже 800, щебня из метаморфических пород — не ниже 600 и осадочных пород — не ниже 300, гравия и щебня из гравия — не ниже 600.

Марка щебня из природного камня должна быть не ниже:

300 — для бетона класса В15 и ниже;

800 » » классов В25; В27,5; В30;

Допускается применять щебень из осадочных карбонатных пород марки 400 для бетона класса В22,5, если содержание в нем зерен слабых пород не превышает 5 %.

Марки гравия и щебня из гравия должны быть не ниже:

600 — для бетона класса В22,5 и ниже;

1.6.9. Содержание зерен слабых пород в щебне из природного камня не должно превышать, % по массе:

5 — для бетона классов В40 и В45;

10 » » » В20, В22,5, В25, В27,5 и В30;

Содержание зерен слабых пород в гравии и щебне из гравия не должно превышать 10 % по массе для бетонов всех классов.

1.6.8, 1.6.9.(Измененная редакция, Изм. № 1).

1.6.10. Морозостойкость крупных заполнителей должна быть не ниже нормированной марки бетона по морозостойкости.

1.6.11. Мелкий заполнитель для бетона выбирают по зерновому составу, содержанию пылевидных и глинистых частиц, петрографическому составу, радиационно-гигиенической характеристике. При подборе состава бетона учитывают плотность, водопоглощение (для песков из отсевов дробления), пустотность, а также прочность исходной горной породы на сжатие в насыщенном водой состоянии (для песков из отсевов дробления).

Мелкие заполнители должны иметь среднюю плотность зерен от 2000 до 2800 кг/м 3 .

1.6.12. Зерновой состав мелкого заполнителя должен соответствовать графику (см. чертеж). При этом учитывают только зерна, проходящие через сито с круглыми отверстиями диаметром 5 мм. При несоответствии зернового состава природных песков требованиям графика следует применять укрупняющую добавку к мелким и очень мелким пескам — песок из отсевов дробления или крупный песок, а к крупному песку — добавку, понижающую модуль крупности, — мелкий или очень мелкий песок.

Читайте также:  Протокол испытания бетона образец 7 суток

С учетом требований п. 1.6.2 в бетонах класса по прочности до В30 или Вtb4,0 включ. допускается использование очень мелких песков с модулем крупности от 1,0 до 1,5 с содержанием зерен менее 0,16 мм до 20 % по массе и пылевидных и глинистых частиц не более 3 % по массе.

1.6.13. Виды вредных примесей и характер возможного воздействия их на бетон приведены в приложении 2.

Допустимое содержание пород и минералов, отнесенных к вредным примесям в заполнителях:

— аморфные разновидности диоксида кремния, растворимого в щелочах (халцедон, опал, кремень и др.) — не более 50 ммоль/л;

— сера, сульфиды, кроме пирита (марказит, пирротин и др.) и сульфаты (гипс, ангидрит и др.) в пересчете на SO3 — не более 1,5 % по массе для крупного заполнителя и 1,0 % по массе — для мелкого заполнителя;

— пирит в пересчете на SO3 — не более 4 % по массе;

— слоистые силикаты (слюды, гидрослюды, хлориты и др., являющиеся породообразующими минералами) — не более 15 % по объему для крупного заполнителя и 2 % по массе — для мелкого заполнителя;

— магнетит, гидрооксиды железа (гетит и др.), апатит, нефелин, фосфорит, являющиеся породообразующими минералами, — каждый в отдельности не более 10 %, а в сумме — не более 15 % по объему;

— галоиды (галит, сильвин и др.), включающие водорастворимые хлориды, в пересчете на ион хлора — не более 0,1 % по массе для крупного заполнителя и 0,15 % по массе — для мелкого заполнителя;

— свободное волокно асбеста — не более 0,25 % по массе;

— уголь — не более 1 % по массе.

Размеры отверстий контрольных сит, мм

1 — нижняя граница крупности песка (модуль крупности 1,5); 2 — нижняя граница крупности песка (модуль крупности 2,0) для бетонов класса В15 и выше;
3 — нижняя граница крупности песка (модуль крупности 2,5) для бетонов класса В25 и выше; 4 — верхняя граница крупности песков (модуль крупности 3,25).

1.6.14. Заполнители, содержащие включения вредных примесей, превышающие значения, приведенные в п. 1.6.13, а также цеолит, графит и горючие сланцы, могут применяться для производства бетона только после проведения испытаний в бетоне в соответствии с требованиями п. 1.6.2.

1.6.15. Для применения щебня из осадочных карбонатных пород афанитовой структуры и изверженных эффузивных пород стекловидной структуры, гравия с гладкой поверхностью для бетона класса по прочности В22,5 и выше и гравия любого вида для бетона класса по прочности В30 и выше должны быть проведены их испытания в бетоне в соответствия с п. 1.6.2.

(Измененная редакция, Изм. № 1).

1.6.16. Дополнительные требования к заполнителям для бетонов конструкций различных видов установлены в приложении 3.

1.7. Для снижения расхода цемента и заполнителей при приготовлении бетонных смесей рекомендуется использовать золы-уноса, шлаки и золошлаковые смеси ТЭС, отвечающие требованиям ГОСТ 25592, ГОСТ 25818 и ГОСТ 26644.

1.8. Для регулирования и улучшения свойств бетонной смеси и бетона, снижения расхода цемента и энергетических затрат следует применять химические добавки, удовлетворяющие требованиям ГОСТ 24211.

(Измененная редакция, Изм. № 1).

1.9. Бетоны марки по морозостойкости Р200 и выше, а также бетоны марки по морозостойкости Р100 и выше для гидротехнических сооружений следует изготавливать с обязательным применением воздухововлекающих или газообразующих добавок

(Новая редакция, Изм. № 2).

1.9а. Бетоны для дорожных и аэродромных покрытий следует, как правило, приготавливать с обязательным применением воздухововлекающих и пластифицирующих добавок.

Допускается при соответствующем техническом обосновании приготавливать подвижные бетонные смеси с одной воздухововлекающей добавкой, а жесткие бетонные смеси — с одной пластифицирующей добавкой. Допускается также после проведения специальных исследований и опытного строительства применять газообразующую добавку вместо воздухововлекающей добавки.

(Введен дополнительно, Изм. № 2).

1.10. Бетонные смеси марок по удобоукладываемости П3 — П5 для производства сборных железобетонных конструкций и изделий и марок по удобоукладываемости П4 и П5 для монолитных и сборномонолитных конструкций должны приготовляться с обязательным применением пластифицирующих добавок.

1.11. Вода для затворения бетонной смеси и приготовления растворов химических добавок должна соответствовать требованиям ГОСТ 23732.

2.1. Входным контролем материалов (цемента, заполнителей, воды, добавок), применяемых для приготовления бетонных смесей бетонов, устанавливают их соответствие требованиям разд. 1.

2.2. Качество бетона для сборных железобетонных и бетонных конструкций контролируют при приемке конструкций по ГОСТ 13015.

2.3. Приемку бетона по качеству для монолитных конструкций осуществляют по всем нормируемым показателям, установленным проектом производства работ.

(Измененная редакция, Изм. № 1).

2.4. Бетоны по морозостойкости, водонепроницаемости, средней плотности, истираемости, водопоглощению оценивают при подборе каждого нового номинального состава бетона по ГОСТ 27006, а в дальнейшем — не реже одного раза в 6 мес., а также при изменении состава бетона, технологии производства и качества используемых материалов.

Периодические испытания по показателю удельной активности естественных радионуклидов в бетоне проводят при первичном подборе номинального состава бетона, а также при изменений качества применяемых материалов, когда их удельная активность естественных радионуклидов в новых материалах превышает соответствующие характеристики материалов, ранее применяемых.

При необходимости, бетон по показателям влажности, деформации усадки, ползучести, выносливости, тепловыделению, призменной прочности, модулю упругости, коэффициенту Пуассона, защитным свойствам бетона по отношению к арматуре и другим нормируемым показателям оценивают в соответствии с требованиями стандартов и технических условий на бетон конструкций конкретного вида.

2.5. Бетонную смесь принимают по ГОСТ 7473.

2.6. Прочность бетона контролируют и оценивают по ГОСТ 18105.

МЕТОДЫ КОНТРОЛЯ

3.1. Прочность бетона на сжатие и растяжение определяют по ГОСТ 10180 или ГОСТ 28570, или ГОСТ 22690, или ГОСТ 17624, а контролируют по ГОСТ 18105.

3.2. Морозостойкость бетона определяют по ГОСТ 10060.0 — ГОСТ 10060.3 или ГОСТ 26134, водонепроницаемость — по ГОСТ 12730.5.

3.3. Показатели качества бетона, установленные в стандартах или технических условиях на бетон конкретных конструкций, определяют по следующим стандартам:

— среднюю плотность — по ГОСТ 12730.1 или ГОСТ 17623;

— влажность — по ГОСТ 12730.2 или ГОСТ 21718, или ГОСТ 23422;

— водопоглощение — по ГОСТ 12730.3;

— показатели пористости, в том числе объем условно закрытых пор — ГОСТ 12730.4;

— истираемость — по ГОСТ 13087;

— призменную прочность, модуль упругости и коэффициент Пуассона — по ГОСТ 24452;

— деформации усадки и ползучести — по ГОСТ 24544;

— выносливость — по ГОСТ 24545;

— тепловыделение — по ГОСТ 24316;

— характеристики трещиностойкости бетона — по ГОСТ 29167.

(Измененная редакция, Изм. № 2).

3.4. Качество бетонной смеси определяют по ГОСТ 10181.

3.5. Проверка защитных свойств бетона по отношению к стальной арматуре — по НТД, утвержденной в установленном порядке. Коррозионную стойкость бетона определяют по ГОСТ 27677.

3.6. Удельную эффективную активность естественных радионуклидов (Аэфф) сырьевых материалов для приготовления бетонов определяют по ГОСТ 30108.

3.7. Показатели качества крупного заполнителя для тяжелого бетона определяют по ГОСТ 8269.0 и ГОСТ 8269.1, а мелкого заполнителя для бетонов — по ГОСТ 8735.

3.8. Показатели качества добавок проверяют по ГОСТ 24211, а воды — по ГОСТ 23732. Эффективность действия добавок на свойства бетона определяют по ГОСТ 30459.

3.1 — 3.8. (Измененная редакция, Изм. № 1).

3.9. Ускоренное определение прочности бетона на сжатие для регулирования его состава в процессе производства осуществляют по ГОСТ 22783.

3.10. Морозостойкость бетона при подборе и корректировке его состава в лаборатории допускается определять по ГОСТ 10060.4.

3.9, 3.10. (Введены дополнительно, Изм. № 1).

СООТНОШЕНИЕ МЕЖДУ КЛАССАМИ БЕТОНА ПО ПРОЧНОСТИ
НА СЖАТИЕ И РАСТЯЖЕНИЕ И МАРКАМИ

Класс бетона по прочности Средняя прочность бетона ( ) * , кгс/см 2 Ближайшая марка бетона по прочности М Отклонение ближайшей марки бетона от средней прочности класса, %,
Сжатие
В3,5 45,8 M50 +9,2
В5 65,5 M75 +14,5
В7,5 98,2 M100 +1,8
В10 131,0 M150 +14,5
B12,5 163,7 M150 -8,4
B15 196,5 M200 +1,8
В20 261,9 M250 -4,5
В22,5 294,7 M300 +1,8
В25 327,4 M350 +6,9
В27,5 360,2 M350 -2,8
В30 392,9 M400 +1,8
В35 458,4 M450 -1,8
В40 523,9 М550 +5,0
В45 589,4 M600 +1,8
B50 654,8 M700 +6,9
В55 720,3 M700 -2,8
В60 785,8 M800 +1,8
В65 851,3 M900 +5,7
В70 916,8 M900 -1,8
В75 982,3 М1000 +1,8
В80 1047,7 M1000 -4,6
Осевое растяжение
Bt0,4 5,2 Pt5 -3,8
Bt0,8 10,5 Pt10 -4,8
Bt1,2 15,7 Pt15 -4,5
Bt1,6 21,0 Pt20 -4,8
Bt2,0 26,2 Pt25 -4,6
Bt2,4 31,4 Pt30 -4,5
Bt2,8 36,7 Pt35 -4,6
Bt3,2 41,9 Pt40 -4,5
Bt3,6 47,1 Pt45 -4,5
Bt4,0 52,4 Pt50 -4,6
Растяжение при изгибе
Btb0,4 5,2 Ptb5 -3,8
Btb0,8 10,5 Ptb10 -4,8
Btb1,2 15,7 Ptb15 -4,5
Btb1,6 21,0 Ptb20 -4,8
Btb2,0 26,2 Ptb25 -4,6
Btb2,4 31,4 Ptb30 -4,5
Btb2,8 36,7 Ptb35 -4,6
Btb3,2 41,9 Ptb40 -4,5
Btb3,6 47,1 Ptb45 -4,5
Btb4,0 52,4 Ptb50 -4,6
Btb4,4 57,6 Ptb60 +4,2
Btb4,8 62,9 Ptb65 +3,3
Btb5,2 68,1 Ptb70 +2,8
Btb5,6 73,3 Ptb75 +2,3
Btb6,0 78,6 Ptb80 +1,8
Btb6,4 83,8 Ptb85 +1,4
Btb6,8 89,1 Ptb90 +1,0
Btb7,2 94,3 Ptb90 -4,6
Btb8,0 104,8 Ptb100 -4,6

* Средняя прочность бетона R рассчитана при коэффициенте вариации V, равном 13,5 %, и обеспеченности 95 % для всех видов бетонов, а для массивных гидротехнических конструкций при коэффициенте вариации V, равном 17 %, и обеспеченности 90 %.

(Измененная редакция, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

РАЗРАБОТАН И ВНЕСЕН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Госстроя СССР

ВЗАМЕН ГОСТ 10268-80 и ГОСТ 26633-85

ИЗДАНИЕ (сентябрь 2005 г.) с Изменением № 1, утвержденным в декабре 2001 г. (ИУС 11-2002)

Переиздание(по состоянию на май 2008 г.)

1. Технические требования. 1 2. Приемка. 8 3. Методы контроля. 9 Приложение 1 Соотношение между классами бетона по прочности на сжатие и растяжение и марками. 10 Приложение 2 Характер возможного воздействия вредных примесей на бетон. 11 Приложение 3 Дополнительные требования к заполнителям для бетонов, предназначенных для различных видов строительства. 11

ГОСТ 26633-91

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ
ТЯЖЕЛЫЕ И МЕЛКОЗЕРНИСТЫЕ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Москва Стандартинформ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕТОНЫ ТЯЖЕЛЫЕ И МЕЛКОЗЕРНИСТЫЕ Технические условия Heavy-weight and sand concretes. Specifications ГОСТ 26633-91

Дата введения 01.01.92

Настоящий стандарт распространяется на конструкционные тяжелые и мелкозернистые бетоны (далее — бетоны), применяемые по всех видах строительства.

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Требования настоящего стандарта следует соблюдать при разработке новых, и пересмотре действующих стандартов и технических условий, проектной и технологической документации на сборные бетонные и железобетонные изделия и конструкции заводского изготовления, монолитные и сборно-монолитные сооружения (далее — конструкции).

1.2. Бетоны следует изготавливать в соответствии с требованиями настоящего стандарта по проектной и технологической документации на конструкции конкретных видов, утвержденной в установленном порядке.

Характеристики

1.3.1. Требования к бетону установлены в соответствии с ГОСТ 25192 и международным стандартом ИСО 3893.

* На территории Российской Федерации действуют СНиП 52-01-2003 (здесь и далее).

(Измененная редакция, Изм. № 2).

1.3.2. Прочность бетона в проектном возрасте характеризуют классами прочности на сжатие, осевое растяжение, растяжение при изгибе.

Для бетонов установлены следующие классы:

— по прочности на сжатие: В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В35; В40; В45; В50; В55; В60; В65; В70; В75; В80.

Примечание. Допускается применение бетона промежуточных классов по прочности на сжатие В22,5 и В27,5;

1. Для бетона конструкций, запроектированных до ввода в действие СТ СЭВ 1406 (при нормировании прочности по маркам), установлены следующие марки:

— по прочности на сжатие: М50; М75; M100; M150; М200; М250; M300; М350; М400; М450; М500; М550; М600; М700; М800; М900; М1000;

2. Соотношение между классами и марками бетона по прочности на растяжение и сжатие при нормативном коэффициенте вариации 13,5 %, а для массивных гидротехнических конструкций — 17,0 % приведено в приложении 1.

1.3.3. Для бетонов конструкций, подвергающихся в процессе эксплуатации попеременному замораживанию и оттаиванию, назначают следующие марки бетона по морозостойкости: F50; F75; F100; F150; F200; F300; F400; F500; F600; F800; F1000.

1.3.4. Для бетонов конструкций, к которым предъявляются требования ограничения проницаемости или повышенной плотности и коррозионной стойкости, назначают марки по водонепроницаемости. Установлены следующие марки по водонепроницаемости: W2; W4; W6; W8; W10; W12; W14; W16; W18; W20.

1.3.5. Классы бетона по прочности, марки по морозостойкости и водонепроницаемости бетонов в конструкциях конкретных видов устанавливают в соответствии с нормами проектирования указывают в стандартах, технических условиях и в проектной документации на эти конструкции.

1.3.6. В зависимости от условий работы бетона, в стандартах или технических условиях и рабочих чертежах бетонных и железобетонных конструкций следует устанавливать дополнительные требования к качеству бетонов, предусмотренные ГОСТ 4.212.

1.3.7. Технические требования к бетону, установленные в пп. 1.3.1 — 1.3.6, должны быть обеспечены изготовителем конструкции в проектном возрасте, который указывают в проектной документации на эти конструкции и назначают в соответствии с нормами проектирования в зависимости от условий твердения бетона, способов возведения и сроков фактического загружения этих конструкций. Если проектный возраст не указан, технические требования к бетону должны быть обеспечены в возрасте 28 сут.

1.3.7а. Значения нормируемых отпускной, передаточной (для преднапряженных конструкций) прочности бетона устанавливают в проекте конкретной конструкции и указывают их в стандарте или технических условиях на эту конструкцию.

(Введен дополнительно, Изм. № 1).

1.3.8. Удельная эффективная активность естественных радионуклидов (Аэфф) сырьевых материалов, применяемых для приготовления бетонов, не должна превышать предельных значений в зависимости от области применения бетонов по приложению А ГОСТ 30108.

(Измененная редакция, Изм. № 1).

Требования к бетонным смесям

1.4.1. Бетонные смеси должны соответствовать требованиям ГОСТ 7473.

1.4.2. Состав бетона подбирают по ГОСТ 27006.

При выборе материалов для подбора состава бетона следует производить радиационно-гигиеническую оценку этих материалов.

1.4.1, 1.4.2. (Измененная редакция, Изм. № 1).

1.4.3. Для дорожных и аэродромных покрытий из тяжелого и мелкозернистого бетона водоцементное отношение назначается в зависимости от удобоукладываемости бетонной смеси по ГОСТ 7473 и должно быть не более указанных в табл. 1а.

Последнее изменение этой страницы: 2016-12-17; Нарушение авторского права страницы

источник